
Arrays

Module II

Array: One dimensional array –Two dimensional

array – Strings and its operations. User defined

Functions – Declarations –Definition- Call by value

and call by reference- Types of functions- Recursive

functions – Storage Classes-Scope , Visibility and

Life time of variables.

Introduction

• Arrays

– Structures of related data items

– Static entity - same size throughout program

• A few types

– C-like, pointer-based arrays

Arrays
• Array

– Consecutive group of memory locations

– Same name and type

• To refer to an element, specify

– Array name and position number

• Format: arrayname[position number]

– First element at position 0

– n element array c:
c[0], c[1]…c[n - 1]

Arrays

c[6]

-45

6

0

72

1543

-89

0

62

-3

1

6453

78

Name of array (Note that all

elements of this array have

the same name, c)

c[0]

c[1]

c[2]

c[3]

c[11]

c[10]

c[9]

c[8]

c[7]

c[5]

c[4]

Position number of the element

within array c

Declaring Arrays

• Declaring arrays - specify:

– Name

– Type of array

– Number of elements

– Examples
int c[10];

float hi[3284];

• Declaring multiple arrays of same type

– Similar format as other variables

– Example
int b[100], x[27];

Examples Using Arrays

• Initializers
int n[5] = { 1, 2, 3, 4, 5 };

– If not enough initializers, rightmost elements become 0

– If too many initializers, a syntax error is generated
int n[5] = { 0 }

– Sets all the elements to 0

• If size omitted, the initializers determine it
int n[] = { 1, 2, 3, 4, 5 };

– 5 initializers, therefore n is a 5 element array

Examples Using Arrays
• Strings

– Arrays of characters

– All strings end with null ('\0')

– Examples:
char string1[] = "hello";

char string1[] = { 'h', 'e', 'l', 'l', 'o',

'\0’ };

– Subscripting is the same as for a normal array
String1[0] is 'h'

string1[2] is 'l'

Examples Using Arrays

• https://www.tutorialspoint.com/cprogramming/c_arrays.h
tm

• https://www.tutorialspoint.com/cprogramming/c_multi_dimen
sional_arrays.htm

Passing Arrays to Functions

• Specify the name without any brackets
– To pass array myArray declared as

int myArray[24];

to function myFunction, a function call would
resemble

myFunction(myArray, 24);

– Array size is usually passed to function

• Arrays passed call-by-reference

– Value of name of array is address of the first element

– Function knows where the array is stored

• Modifies original memory locations

• Individual array elements passed by call-by-value
– pass subscripted name (i.e., myArray[3]) to

function

Passing Arrays to Functions

• Function prototype:
void modifyArray(int b[], int arraySize);

– Parameter names optional in prototype

•int b[] could be simply int []

•int arraysize could be simply int

• Pass arrays to a function in C (programiz.com)

https://www.programiz.com/c-programming/c-arrays-functions

Sorting Arrays

• Sorting data

– Important computing application

– Virtually every organization must sort some data

• Massive amounts must be sorted

• Bubble sort (sinking sort)

– Several passes through the array

– Successive pairs of elements are compared

• If increasing order (or identical), no change

• If decreasing order, elements exchanged

– Repeat these steps for every element

Sorting Arrays

• Example:

– Original: 3 4 2 6 7

– Pass 1: 3 2 4 6 7

– Pass 2: 2 3 4 6 7

– Small elements "bubble" to the top

Computing Mean, Median and

Mode Using Arrays

• Mean

– Average

• Median

– Number in middle of sorted list

– 1, 2, 3, 4, 5 (3 is median)

• Mode

– Number that occurs most often

– 1, 1, 1, 2, 3, 3, 4, 5 (1 is mode)

Multiple-Subscripted Arrays

• Multiple subscripts - tables with rows, columns

– Like matrices: specify row, then column.

• Initialize

int b[2][2] = { {1, 2}, {3, 4}};

– Initializers grouped by row in braces

int b[2][2] = { { 1 }, { 3, 4 } };

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

a[1][3]

a[2][3]

Row subscript
Array name

Column subscript

1 2

3 4

1 0

3 4

{1,7, 6,9

2, 8,5,11

6, 5, 3,4}

a[0][3] = 9

a[1][2] = 5

a[2][3]= 4

Strings

• Strings A special kind of array is an array of characters

ending in the null character called string arrays .

• A string is declared as an array of characters char s[1 0] char

p[30]

• When declaring a string don't forget to leave a space for the

null character which is also known as the string terminator

character

Strings

• C offers four main operations on strings

strcpy - copy one string into another

• strcat - append one string onto the right side

of the other

• strcmp — compare alphabetic order of two

strings

• strlen — return the length of a string

String Functions

• strcpy - strcpy(destinationstring,

sourcestring)

• Copies sourcestring into destinationstring

• For example strcpy(str, "hello world");

assigns "hello world" to the string str

Example

• Example with strcpy

• #include main() char x[] = "Example with

strcpy", char y[25];

• printf("The string in array x is %s “,

strcpy(y,x)) ;

• printf("The string in array y is %s”, x);

StrCAT

• strcat strcat(destinationstring, sourcestring)

appends sourcestring to right hand side of

destinationstring

• For example if str had value "a big

strcat(str, "hello world"); appends "hello

world" to the string "a big " to get

• a big hello world

Exercise 1

• Characters are at the heart Of strings

•
https://www.programmingsimplified.com/c/

source-code/c-program-for-pattern-

matching

https://www.programmingsimplified.com/c/source-code/c-program-for-pattern-matching

Examples

• https://www.programiz.com/c-

programming/c-

strings#:~:text=In%20C%20programming%

2C%20a%20string,at%20the%20end%20by

%20default.

https://www.programiz.com/c-programming/c-strings#:~:text=In%20C%20programming%2C%20a%20string,at%20the%20end%20by%20default.

Module II -

Functions

Part II
Introduction-Functions-User defined Functions –

Declarations –Definition- Call by value and call

by reference- Types of functions- Recursive

functions – Storage Classes-Scope , Visibility

and Life time of variables.

Functions -

Introduction
•A relation is a function provided there is

exactly one output for each input.

main()

{

message() ;

message();

printf ("\nCry, and you stop the

monotony!") ;

}

message()

{

printf ("\nSmile, and the world smiles

INPU

T(DOMAI

N)

OUTPU

T

(RANG

E)

FUNCTION

MACHINE

In order for a relationship to be a function…

EVERY INPUT MUST HAVE AN OUTPUT

TWO DIFFERENT INPUTS CAN HAVE THE

SAME OUTPUT

Functions

ONE INPUT CAN HAVE ONLY ONE

OUTPUT

Functions

A function is a self-contained block of statements that perform a

coherent task of some kind. Every C program can be thought of

as a collection of these functions.

Hiring a person for Job, sometimes its easy and sometimes its

difficult.

Analogy- Motor bike repair

The monthly service of motor bike is done regularly ,

so it is done every month.

Let us now look at a simple C function that operates in

much the same way as the mechanic. Actually, we will

be looking at two things—a function that calls or

activates the function and the function itself.

Example Function
main()

{

printf ("\nI am in main") ;

italy() ;

brazil() ;

argentina() ;

}

italy()

{

printf ("\nI am in italy") ;

}

brazil()

{

printf ("\nI am in brazil") ;

}

argentina()

{

printf ("\nI am in argentina") ;

}

Inferences from the Program

• Any C program contains at least one function.

• − If a program contains only one function, it must be main().

• − If a C program contains more than one function, then one (and only

one) of these functions must be main(), because program execution

always begins with main().

• − There is no limit on the number of functions that might be present in a

C program.

• − Each function in a program is called in the sequence specified by the

function calls in main().

Sending and Receiving Values

between Functionscalsum (int, int, int) ;

main()

{

int a, b, c, sum=0 ;

printf ("\nEnter any three numbers ") ;

scanf ("%d %d %d", &a, &b, &c) ;

sum = calsum (a,b,c) ;

printf ("\nSum = %d", sum) ;

}

calsum (int x, int y, int z)

{

int d ;

d = x + y + z ;

return (d) ;

}

User defined Functions

A function is a block of code that performs a specific

task.

C allows you to define functions according to your need.

These functions are known as user-defined functions.

For example:

Suppose, you need to create a circle and color it

depending upon the radius and color. You can create two

functions to solve this problem:

1002

1004

X Ad -1002

num Ad-1006

Change(&x)

* - value @ address

& - gives address

100
200

Function Prototype

A function prototype is simply the declaration of a function

that specifies function's name, parameters and return type.

It doesn't contain function body.

A function prototype gives information to the compiler that

the function may later be used in the program.

returnType functionName(type1 argument1, type2

argument2, ...);

Function Prototype

Example : Function 1 Demo - https://www.onlinegdb.com/

name of the function is addNumbers()

return type of the function is int

two arguments of type int are passed to the function

The function prototype is not needed if the user-defined function is

defined before the main() function.

Pointers –Call by reference

• The call by reference method of passing arguments to

a function copies the address of an argument into the

formal parameter.

• Inside the function, the address is used to access the

actual argument used in the call. It means the changes

made to the parameter affect the passed argument.

• To pass a value by reference, argument pointers are

passed to the functions just like any other value.

swap(), exchanges the values of the two integer

variables pointed to, by their arguments.

Function Declaration and Definition

• For example, if the my_function() function,

discussed in the previous section, requires two

integer parameters, the declaration could be

expressed as follows: return_type

my_function(int x, y); where int x, y indicates that

the function requires two parameters, both of

which are integers.

Call by reference - Example#include <stdio.h>
int main () { /* local variable definition */
int a = 100; int b = 200;
printf("Before swap, value of a : %d\n", a);
printf("Before swap, value of b : %d\n", b);
/* calling a function to swap the values */
swap(&a, &b);
printf("After swap, value of a : %d\n", a);
printf("After swap, value of b : %d\n", b);
return 0;}
void swap(int *x, int *y)
{
int temp;
temp = *x;
*x = *y;
/* put y into x */ *y = temp; /* put temp into y */
return;

}

Recursive Function

Recursive Function - Examples

In programming terms, a recursive function can be

defined as a routine that calls itself directly or indirectly.

Scope – Visibility – Life time

Scope

The region of a program in which a variable is available for

use.

Visibility

The program’s ability to access a variable from the memory.

Lifetime

The lifetime of a variable is the duration of time in which a

variable exists in the memory during execution.

Life time of the Variable

File Scope

Any variable declared with file scope can be accessed by

any function defined after the declaration (in our example

both f and main can access global_a).

If global was declared after the function f but before main it

would only be accessible within main.

Block Scope

Block scope is defined by the pairing of the curly braces {

and } . A variable declared within a block can only be

accessed within that block.

Visibility of Variable

Explaining the Storage Class

https://www.tutorialspoint.com/explain-lifetime-of-a-variable-in-c-language#:~:text=The%20lifetime%20of%20a%20variable,with%20automatic%20lifetime%20are%20created.

Scope of Variable

File Scope

Any variable declared with file scope can be accessed by

any function defined after the declaration.

Block Scope

Block scope is defined by the pairing of the curly

braces { and } .

A variable declared within a block can only be accessed

within that block.

Link Tree - link

https://linktr.ee/rspdarshinir

https://linktr.ee/rspdarshinir

