
BCSE102L –Structured and Object
oriented Programming (Theory)

Dr.R.Priyadarshini

Module III : Pointers
Declaration and Access of pointer Variables,

Pointer arithmetic- Dynamic memory
allocation-Pointers and arrays –Pointer and

functions

Pointers in C

Pointers

What is Pointers?
Pointer is a user defined data type which creates special types of
variables which can hold the address of primitive data

Why should I use Pointers?Why should I use Pointers?
- Increase the execution speed
- Enable us to access a variable that is defined outside the
function
- More efficient in handling the data tables

- Reduce the length and complexity of a program

Pointers

What are the operators used?
*, &

What are the advantages of using pointers?
§ Dynamic memory allocation is possible with pointers.§ Dynamic memory allocation is possible with pointers.
§ Passing arrays and structures to functions
§ Passing addresses to functions.
§ Creating data structures such as trees, linked lists etc.

Pointers Assignment

int a=50;
int *ptr1;
int **ptr2;
ptr1=&a;
ptr2=&pt1;

void main(){
int x=25;
int *ptr=&x; //statement one
int **temp=&ptr; //statement two
printf(“%d %d %d”,x,*ptr,**temp);
}

Pointers Assignment

#include <stdio.h>
int main ()
{
char ch = ‘a’;
char* p1, *p2;char* p1, *p2;
p1 = &ch;
p2 = p1; // Pointer Assignement Taking Place
printf (" *p1 = %c And *p2 = %c", *p1,*p2);
return 0;

}
Ans: *p1=a And *p2=a

Pointers Conversion
#include <stdio.h>
int main ()
{
int i = 67;
char* p1
int *p2;int *p2;
p2 = &i;
p1 = (char *) p2; // Type Casting and Pointer Conversion
printf (" *p1 = %c And *p2 = %d", *p1,*p2);
return 0;
}

Ans: *p1 = C And *p2 = 67

Pointers
Opertor Precendence and Associativity

Reading Pointers

ptr is pointer to such one dimensional array of
size three which content char type data

Reading Pointers

1. float (* ptr) (int)
2. void (*ptr) (int (*)[2],int (*) void))
3. int (* (* ptr) [5]) ()

Arithmetic operation with pointer

Address + Number= Address
Address - Number= Address
Address++ = Address
Address-- = AddressAddress-- = Address
++Address = Address
--Address = Address
Address – Address=Number void main(){

int *ptr=(int *)1000;
ptr=ptr+1;
printf(" %u",ptr);
}

Output: 1002

Pointers to function

int * function();
void main(){
auto int *x;
int *(*ptr)();
ptr=&function;

int *function(){
static int a=10;
return &a;
}

ptr=&function;
x=(*ptr)();
printf ("%d",*x);
}

Output: 10
Explanation:
Here function is function whose parameter is void data type
and return type is pointer to int data type.

x=(*ptr)()x=(*ptr)()
=> x=(*&function)() //ptr=&function
=> x=function() //From rule *&p=p
=> x=&a
So, *x = *&a = a =10

Pointers Supports

§ Pointer to array of function
§ Pointer to array of string
§ Pointer to structure
§ pointer to union
§ Multi level pointer
§ Pointer to array of pointer to string§ Pointer to array of pointer to string
§ Pointer to three dimentional array
§ Pointer to two dimensional array
§ Sorting of array using pointer
§ Pointer to array of array
§ Pointer to array of union
§ Pointer to array of structure
§ Pointer to array of character
§ Pointer to array of integer
§ Complex pointer

Functions Returning Pointers

char display (char (*)[])
void main(){
char c;
char character[]={65,66,67,68};
char (*ptr)[]=&character;
c=display (ptr);c=display (ptr);
printf ("%c", c);

}

char display (char (*s)[])
{
**s+=2;
return **s;

}

Output: C
Explanation: Here function display is passing pointer to array of
characters and returning char data type.
**s+=2
=>**s=**s+2=>**s=**s+2
=>**ptr=**ptr+2 //s=ptr
=>**&character= **&character+2 //ptr=&character
=>*character=*character+2 //from rule *&p =p
=>character[0]=character[0]+2 //from rule *(p+i)=p[i]
=>character [0] =67
**s=character [0] =67

#include<stdio.h>
void main()
{
int a = 320;
char *ptr;

Question 1.

char *ptr;
ptr =(char *)&a;
printf("%d ",*ptr);
getch();
} (A) 2 (B) 320 (C) 64 (D) Compilation error

(E) None of above

Question 1. Explanation

As we know int is two byte data byte while char is one byte data
byte. char pointer can keep the address one byte at time.

Binary value of 320 is 00000001 01000000 (In 16 bit)

Memory representation of int a = 320 is:Memory representation of int a = 320 is:

So ptr is pointing only first 8 bit which color is green and Decimal
value is 64.

Question 2.

(A) NULL

#include<stdio.h>
#include<conio.h>
void main(){
void (*p)();
int (*q)();
int (*r)(); (A) NULL

(B) Department of Computer Applications
(C) Error (D) Compilation error
(E) None of above

int (*r)();
p = clrscr;
q = getch;
r = puts;
(*p)();
(*r)(“ Department of Computer Applications");
(*q)(“Error”);
}

Question 2. Explanation

p is pointer to function whose parameter is void and return
type is also void.

r and q is pointer to function whose parameter is void andr and q is pointer to function whose parameter is void and
return type is int .

So they can hold the address of such function.

#include<stdio.h>
void main(){
int i = 3;
int *j;
int **k;

Question 3.?

int **k;
j=&i;
k=&j;
printf(“%u %u %d ”,k,*k,**k);
}

(A) Address, Address, 3 (B) Address, 3, 3 (C) 3, 3,3
(D) Compilation error (E) None of above

Question 3. Explanation

Memory representation

Here 6024, 8085, 9091 is any arbitrary address, it may be different.
Value of k is content of k in memory which is 8085
Value of *k means content of memory location which address k
keeps.
k keeps address 8085 .k keeps address 8085 .
Content of at memory location 8085 is 6024
In the same way **k will equal to 3.
Short cut way to calculate:
Rule: * and & always cancel to each other
i.e. *&a = a
So *k = *(&j) since k = &j
*&j = j = 6024
And
**k = **(&j) = *(*&j) = *j = *(&i) = *&i = i = 3

Question 4?

#include<stdio.h>
#include<string.h>
void main(){
char *ptr1 = NULL;
char *ptr2 = 0;
strcpy(ptr1," c");strcpy(ptr1," c");
strcpy(ptr2,"questions");
printf("\n%s %s",ptr1,ptr2);
getch();
} (A) c questions (B) c (null)

(C) (null) (null)

(D) Compilation error(E) None of above

Question 5?

#include<stdio.h>
#include<string.h>
void main(){
register a = 25;register a = 25;
int far *p;
p=&a;
printf("%d ",*p);
getch();
}

(A) 25 (B) 4 (C) Address

(D) Compilation error

(E) None of above

Question 5

Explanation:

Register data type stores in CPU. So it has not any
memory address. Hence we cannot write &a.

Question 6?

#include<stdio.h>
#include<string.h>
void main(){
int a = 5,b = 10,c;
int *p = &a,*q = &b;

Difference of two same type of
pointer is always one

int *p = &a,*q = &b;
c = p - q;
printf("%d" , c);
getch();
} (A) 1 (B) 5 (C) -5

(D) Compilation error
(E) None of above

Question 7?

#include<stdio.h>
int main()
{
int i=3, *j, k;int i=3, *j, k;
j = &i;
printf("%d\n", i**j*i+*j);
return 0;
}

A. 30 B. 27

C. 9 D. 3

Questions 8.?

#include<stdio.h>
int main()
{
int ***r, **q, *p, i=8;
p = &i; q = &p; r = &q;p = &i; q = &p; r = &q;
printf("%d, %d, %d\n", *p, **q, ***r);
return 0;
}

A. 8,8,8 B. 4000, 4002, 4004

C. 4000, 4004, 4008 D. 4000, 4008, 4016

Questions 9.?

#include<stdio.h>
int main()
{
void *vp;
char ch=74, *cp="JACK";

A. JCK B. J65K C. JAK D. JACK

char ch=74, *cp="JACK";
int j=65;
vp=&ch;
printf("%c", *(char*)vp);
vp=&j;
printf("%c", *(int*)vp);
vp=cp;
printf("%s", (char*)vp+2);
return 0;

}

Questions 10.?

#include<stdio.h>
int main()
{
int arr[2][2][2] = {10, 2, 3, 4, 5, 6, 7, 8};
int *p, *q; int *p, *q;
p = &arr[1][1][1];
q = (int*) arr;
printf("%d, %d\n", *p, *q);
return 0;
}

A. 8 10 B. 10 2 C. 8 1 D. Garbage value

Question 11.?

#include<stdio.h>
int main()
{
char str[] = "peace";
char *s = str;char *s = str;
printf("%s\n", s++ +3);
return 0;
}

A. Peace B. eace C. ace D. ce

Question 12.?

#include<stdio.h>
int main()
{
char str1[] = "India";
char str2[] = "BIX"; char str2[] = "BIX";
char *s1 = str1, *s2=str2;
while(*s1++ = *s2++)
printf ("%s", str1);
printf("\n");
return 0;
} A. IndiaBIX B. BndiaBIdiaBIXia

C. India D. (null)

*ptr++ Vs ++*ptr

#include <stdio.h>
#include <conio.h>
void main()
{
int *a;
int b=10; clrscr();int b=10; clrscr();
a=&b;
printf("%u\n",a);
*a++;
printf("%u\n",a);
++*a;
printf("%d",*a);
printf("%d",b);
getch();
}

65524 65526 1 10

20
var
ip=&var
1001

1101 Int b=9;

b
1105

1001
int *ip
1118

3/15/2022 2.0 _ Pointers and Arrays 2

int i ; int *ptr; ptr=i;

1002-i

1004

1006

1008

1010

1012

3/15/2022 2.0 _ Pointers and Arrays 3

3/15/2022 2.0 _ Pointers and Arrays 4

3/15/2022 2.0 _ Pointers and Arrays 5

3/15/2022 2.0 _ Pointers and Arrays 6

3/15/2022 2.0 _ Pointers and Arrays 7

Pointers and Arrays

• We are already familiar with arrays, which store multiple values of
the same data type.

• Array elements are stored in contiguous memory locations.
• When an array is declared, compiler allocates required amount of

contiguous memory locations to hold all the elements of the array.
• Memory is allocated by the compiler during compilation time itself.
• Base address of the array is the address of the first element of the

array.
• We can create a pointer which can be used to point an array.
• In an one dimensional array, we can use single subscript to access

the array elements.
• Name of the 1-D array or &array[0] points to the address of the

first element of an array.

3/15/2022 2.0 _ Pointers and Arrays 8

Pointers and 1D Arrays
• Suppose we declare an integer array “A” with 5

elements and assuming that the base address of the
array a is 1000 and each integer element requires two
bytes of memory.

• The five elements will be stored as follows:

• Here array name “A” acts as a constant pointer which
will give the base address of the array and points to
the first element of the array, A[0].
– i.e., the value of A and &A[0] are same.

3/15/2022 2.0 _ Pointers and Arrays 9

Pointers and 1D Arrays
• We can declare another pointer of type int to point to the

array A.

• Now we can access every element of the array A using
pointer p.

• (*p) is used to access the element A[0] which has the value
1 in the given example.

• To access the next element in the array A,
– increment the pointer p by 1 using (p++) or (++p).
– Now we can give *p to get A[1].
– It gives the value 2.
– To get the next element in the array A, increment the pointer p

by 1 and use *p.

3/15/2022 2.0 _ Pointers and Arrays 10

Example 1- Program to demonstrates the use of
pointer to access the array elements

3/15/2022 2.0 _ Pointers and Arrays 11

Example 2- use array name as a pointer to
access the array elements

3/15/2022 2.0 _ Pointers and Arrays 12

• In the above program, A is a constant pointer which always
points to first element A[0].

• We cannot move this pointer to next element using ++
operator since base address of the array cannot be
changed.

• To access the elements of the array using a constant
pointer A, we can use the following statements:

3/15/2022 2.0 _ Pointers and Arrays 13

Example 3- Program to display the elements of
an array in reverse order using pointer.

3/15/2022 2.0 _ Pointers and Arrays 14

Example 4 – Program to add the elements of an
array using pointer

3/15/2022 2.0 _ Pointers and Arrays 15

Example 5 – Program to demonstrate increment and
decrement operators with pointers and arrays.

3/15/2022 2.0 _ Pointers and Arrays 16

Example 6 - Program to copy an array to another array
using pointers

3/15/2022 2.0 _ Pointers and Arrays 17

int var – 1002

ip=&var

*ip – Value at that address

3/15/2022 2.0 _ Pointers and Arrays 18

20 1002

DYNAMIC MEMORY
ALLOCATION

Disadvantages of ARRAYS

MEMORY ALLOCATION OF ARRAY IS STATIC:
Less resource utilization.
For example:

If the maximum elements declared is 30 for an array,
say int test[30], but the user manipulates with only 10
elements, then the space for 20 elements is wasted.

DIFFERENT DATA TYPES COULD NOT BE STORED
IN AN ARRAY

• The use of pointer variable instead of arrays, helps in
allocation of memory at RUN TIME, thus memory can be
allocated or freed anywhere, anytime during the program
execution.

• This is known as DYNAMIC MEMORY ALLOCATION

STATIC vs DYNAMIC

• The allocation of memory for the specific fixed purposes
of a program in a predetermined fashion controlled by
the compiler is said to be static memory allocation.

• The allocation of memory (and possibly its

later de allocation) during the run time of a

program and under the control of the program

is said to be dynamic memory allocation.

Memory Allocation

• In DYNAMIC memory allocation, the memory is allocated
to the variables in the HEAP region.

• The size of HEAP keeps on changing due to creation and
death of variables.

• Thus it is possible to encounter “memory overflow”
during dynamic memory allocation process.

• In such situation memory allocation library function
returns a NULL pointer when they fail to locate enough
memory requested.

Memory Allocation Functions

The following are four memory management
functions defined in library of C that can be used for
allocation and freeing of memory when ever
required.

»malloc

»calloc

» free

» realloc

All the above four functions are defined in library file

<alloc.h>.

malloc ()
• malloc : It is a predefined library function that allocates

requested size of bytes and returns a pointer to the first byte
of the allocated space.

• Pointer returned is of type void that has to be type cast to
the type of memory block created (int, char, float, double).

 General syntax:

ptr = (cast –type *) malloc(byte-size) ;

where ptr is pointer of any data type.

malloc returns a pointer to an area of
memory with size byte-size.

Dynamic Memory Allocation

3/15/2022 2.0 _ Pointers and Arrays 26

Example 1
• int *ptr;

ptr = (int *) malloc (100 * (sizeof (int)) ;

Allocate 200 bytes i.e declare an array of 100 integers
with pointer ptr pointing to the first element of the
array

Number of elements in the
array ptr is pointing to.

Returns the size of
integer

Type cast

Alternative

int * ptr ;

printf (“\n Enter the number of elements in the
array “);

scanf(“%d”, &n);

ptr = (int *) malloc (n x sizeof (int)) ;

int * ptr ;

ptr = (int *) malloc (200) ;

Example 2
char * cptr ;
cptr = (char *) malloc (10) ;

This will allocate 10 bytes of memory space for the pointer cptr of type char.

10 bytes of space

cptr pointer holding the address of the first

byte of the array of 10 elements

? ? ? ? ? ? ? ? ? ?

Important

• The storage space allocated dynamically has NO name
and therefore its contents are accessed ONLY through
a pointer.

• malloc allocates blocks of contiguous memory
locations.

• If allocation fails due to in sufficient space on HEAP, it
returns NULL pointer. Thus when ever we allocate
memory it should be checked whether the memory
has assigned successfully or not.

Exercise

• Write a program to create an array of
integers.Size of the array that is number of
elements in the array will be specified
interactively by the user at RUN TIME.

SOLUTION
#include<alloc.h>

int main() {

int *p, *table, size ;

printf(“\n Enter the size of array “);

scanf(“%d”, &size);

/* memory allocation */

if(table = (int *) malloc (size * (sizeof (int))) == NULL)

{ printf(“\n NO space available “);

exit(1);

}

printf(“\n Address of first byte is %p”,table);

Visualization

If size = 10 => 20 bytes will be allocated.

Integer pointer * table pointing to first

element of array

SOLUTION cont’d: Reading values in the
array

// reading values in array

printf(“\n Input table value “);

for(p= table; p<table + size ; p++)

scanf(“%d”, p); // no ampersand as p is pointer

// printing values of array in reverse order

for(p = table+size – 1 ; p >= table ; p--)

printf(“%d”, *p);

Visualization

table

pointer * p

for(p= table; p<table + size ; p++)

scanf(“%d”, p);

pointer * p pointer * p

Printing values in reverse order

* table

for(p = table+size – 1 ; p >= table ; p--)

printf(“ %d”, *p);

pointer * ppointer * ppointer * p

OUTPUT
What is the size of array ? 5
Address of first byte : 077FA

Input values: 11 12 13 14 15

OUTPUT values in reverse order
15
14
13
12
11

calloc ()

• calloc (): It also allocates the requested number of
bytes, but the difference is that it takes two
parameters:

»N : number of elements
»Element_size: size of element in bytes

 Also when the memory is allocated, all the
elements are assigned a initial value of zero.

 This is not provided by function malloc ()

General syntax:

ptr = (cast _type *) calloc (n, element_size);

• The above statement allocates contiguous space for
n elements, each of size element_size.

• All elements are initialized to zero and a pointer to
the first byte of the allocated region is returned.

• If there is not enough space, a NULL pointer is
returned.

Releasing the Used Space

• In case of Dynamic RUN Time allocation, it is the
responsibility of the programmer to release the
memory space when it is not required by the
program.

• When a block of data in memory is no longer
needed by the program, it should be released as
memory is a factor in executing complex programs.

free ()

• To release the memory currently allocated to a
pointer using DYNAMIC ALLOCATION use the
following function:

free (ptr);

where ptr is a pointer to a memory block
which has already been created using either
malloc or calloc .

Altering the size of memory block

• REALLOCATION function (realloc)

Example

• If the original allocation was done by the
statement:

ptr = (cast_type *) malloc (size) ;

• Then REALLOCATION of space is done by :

ptr = (cast_type *)realloc (ptr, NEW_SIZE);

How It works ? ? ?

• This function allocates a new memory space of size
NEW_SIZE to the pointer variable ptr and returns a
pointer to the first byte of the new memory block.

• The NEW_SIZE may be larger or smaller than the
original size.

• The new block of memory MAY or MAY NOT begin
at the same place as the previously allocated
memory block.

• The function guarantees that the old data will
remain intact, if it run successfully.

• If the function is unsuccessful in locating
additional space, it returns a NULL pointer and
the original block is FREED [lost] .

Memory allocation function

If memory allocation fails, these functions return a
NULL pointer.

Since these functions return a pointer to void, when
allocating memory use conversion:

pi = (int*)malloc(5*sizeof(int)); /* or */

pi = (int*)calloc(5, sizeof(int));

pi = (int*)realloc(pi, 10*sizeof(int));

Exercise

• Write a program to store a character string in a
block of memory space created by malloc and
then modify the same to store a larger string.

SOLUTION
int main(void)

{

char * buffer ;

/* allocating memory */

if((buffer = (char *) malloc (10))== NULL)

{ printf(“ NOT ENOUGH SPACE “);

exit (1); }

strcpy(buffer, “ NOIDA “);

/* reallocating space */

if ((buffer = (char *) realloc(buffer, 15)) == NULL)

{ printf(“ REALLOCATION FAILS “);

exit (1);

}

printf(“ Buffer contains : %s”, buffer);

strcpy(buffer, “ JIIT,Noida”);

Printf(“ Buffer contains : %s “, buffer);

/* freeing the memory */

free (buffer);

}

Two dimensional Array

• In the same manner it is also possible to create a
two dimensional array at RUN TIME using malloc
() or calloc ().

• For creating a two dimensional array, declare a
pointer as follows:

data_type ** pointer ;

example:

int **p;

Example: creating a 2D array of m rows and n columns.

int main()

{ int **ptr;

int m, n;

printf(“\n Enter the number of rows:”);

scanf(“%d”, &m);

printf(“\n Enter the number of columns:”);

scanf(“%d”, &n);

/* creating an array of m pointers */

ptr = (int**) malloc (m *sizeof(int*));

/* allocating each pointer a row (1 D array) */

for (i = 0; i < m; i++)
ptr[i] = (int *)malloc(n * sizeof(int));

ptr[0]

ptr[1]

ptr[2]

ptr[3]

ptr[4]

int **ptr

Check This Out !!!

• Is it possible to create a TWO Dimensional array with m rows, where each row
will have different number of columns ? ? ?

YES ! ! !

Visualization

Advantages

• There are number of reasons for using pointers:

 Pointers are more efficient in handling data tables.

 Pointer reduces the length and complexity of a given

problem.

 Pointer increase the execution speed.

 The use of a pointer array to character strings results

in saving of data storage space in memory.

Thank you

3/15/2022 2.0 _ Pointers and Arrays 56

