
Module IV
Declaration Initialization -Access of structure
Variables- Array of structure – Arrays within

structure-Structure within structures- Structures and
Functions –Pointer to Structure

STRUCTURE
&

UNION

Data Types
C programming language which has the ability to divide the data into different types. The type

of a variable determine the what kind of values it may take on. The various data types are.

• Simple Data type

 Integer, Real, Void, Char

• Structured Data type

Array, Strings

• User Defined Data type

 Enum, Structures, Unions

Structure Data Type

A structure is a user defined data type that groups logically related

data items of different data types into a single unit. All the elements of

a structure are stored at contiguous memory locations. A variable of

structure type can store multiple data items of different data types

under the one name. As the data of employee in company that is name,

Employee ID, salary, address, phone number is stored in structure data

type.

Defining of Structure

A structure has to defined, before it can used. The syntax of defining a structure is

struct <struct_name>

{

<data_type> <variable_name>;

<data_type> <variable_name>;

……..

<data_type> <variable_name>;

};

Example of Structure

The structure of Employee is declared as

struct employee
{
int emp_id;
char name[20];
float salary;
char address[50];
int dept_no;
int age;
};

Memory Space Allocation

8000

8002

8022

8024

8074

8076

8078 employee

 emp_id

 name[20]

 salary

 address[50]

 dept_no

 age

Declaring a Structure Variable

A structure has to declared, after the body of structure has defined. The syntax of

declaring a structure is

Struct <struct_name> <variable_name>;

The example to declare the variable for defined structure

“employee”

struct employee e1;

Here e1 variable contains 6 members that are defined in structure.

Initializing a Structure Members

The members of individual structure variable is initialize one by one or

in a single statement. The example to initialize a structure variable is

1)struct employee e1 = {1, “Hemant”,12000, “3 vikas

colony new delhi”,10, 35);

2)e1.emp_id=1; e1.dept_no=1

e1.name=“Hemant”; e1.age=35;

e1.salary=12000;

e1.address=“ LPU JALANDHAR”;

Accessing a Structure Members

The structure members cannot be directly accessed in the

expression. They are accessed by using the name of

structure variable followed by a dot and then the name of

member variable. The method used to access the

structure variables are e1.emp_id, e1.name, e1.salary,

e1.address, e1.dept_no, e1.age. The data with in the

structure is stored and printed by this method using scanf

and printf statement in c program.

Structure Assignment

The value of one structure variable is assigned to another variable of

same type using assignment statement. If the e1 and e2 are structure

variables of type employee then the statement

e1 = e2;

 assign value of structure variable e2 to e1. The value of each member

of e2 is assigned to corresponding members of e1.

#include<stdio.h>
#include<conio.h>
struct employee
{
int emp_id;
char name[20];
float salary;
char address[50];
int dept_no;
int age;
};
void main ()
 { struct employee e1, e2;
 printf (“Enter the employee id of employee”);
 scanf(“%d”,&e1.emp_id);
 printf (“Enter the name of employee”);
 scanf(“%s”,e1.name);
 printf (“Enter the salary of employee”);
 scanf(“%f”,&e1.salary);

printf (“Enter the address of employee”);
 scanf(“%s”,e1.address);
 printf (“Enter the department of employee”);
 scanf(“%d”,&e1.dept_no);
 printf (“Enter the age of employee”);

scanf(“%d”,&e1.age);

printf (“Enter the employee id of employee”);
scanf(“%d”,&e2.emp_id);
 printf (“Enter the name of employee”);
 scanf(“%s”,e2.name);
 printf (“Enter the salary of employee”);
 scanf(“%f”,&e2.salary);
 printf (“Enter the address of employee”);
 scanf(“%s”,e2.address);
 printf (“Enter the department of employee”);
 scanf(“%d”,&e2.dept_no);
 printf (“Enter the age of employee”);
 scanf(“%d”,&e2.age);
 printf (“The employee id of employee is : %d”, e1.emp_id);
 printf (“The name of employee is : %s”, e1.name);
 printf (“The salary of employee is : %f”, e1.salary);
 printf (“The address of employee is : %s”, e1.address);
 printf (“The department of employee is : %d”, e1.dept_no);
 printf (“The age of employee is : %d”, e1.age);

Program to implement the Structure

 printf (“The employee id of employee is : %d”,
e2.emp_id);

 printf (“The name of employee is : %s”,
e2.name);

 printf (“The salary of employee is : %f”,
e2.salary);

 printf (“The address of employee is : %s”,
e2.address);

 printf (“The department of employee is : %d”,
e2.dept_no);

 printf (“The age of employee is : %d”,e2.age);
 getch();
 }

Output of Program

 Enter the employee id of employee 1
 Enter the name of employee Rahul
 Enter the salary of employee 15000
 Enter the address of employee 4,villa area, Delhi
 Enter the department of employee 3
 Enter the age of employee 35
 Enter the employee id of employee 2
 Enter the name of employee Rajeev
 Enter the salary of employee 14500
 Enter the address of employee flat 56H, Mumbai
 Enter the department of employee 5
 Enter the age of employee 30

Output of Program

 The employee id of employee is : 1
 The name of employee is : Rahul
 The salary of employee is : 15000
 The address of employee is : 4, villa area, Delhi
 The department of employee is : 3
 The age of employee is : 35
 The employee id of employee is : 2
 The name of employee is : Rajeev
 The salary of employee is : 14500
 The address of employee is : flat 56H, Mumbai
 The department of employee is : 5
 The age of employee is : 30

Array of Structure

C language allows to create an array of variables of structure. The array of
structure is used to store the large number of similar records. For example
to store the record of 100 employees then array of structure is used. The
method to define and access the array element of array of structure is
similar to other array. The syntax to define the array of structure is

 Struct <struct_name> <array_name> [<value>];

For Example:-
 Struct employee e1[100];

Program to implement the Array of Structure

#include <stdio.h>
#include <conio.h>
struct employee
{
int emp_id;
char name[20];
float salary;
char address[50];
int dept_no;
int age;
};

Program to implement the Array of Structure

void main ()
 {
 struct employee e1[5];
 int i;
 for (i=1; i<=100; i++)
 {
 printf (“Enter the employee id of employee”);
 scanf (“%d”,&e[i].emp_id);
 printf (“Enter the name of employee”);
 scanf (“%s”,e[i].name);
 printf (“Enter the salary of employee”);
 scanf (“%f”,&e[i].salary);

Program to implement the Array of Structure

 printf (“Enter the address of employee”);
 scanf (“%s”, e[i].address);
 printf (“Enter the department of employee”);
 scanf (“%d”,&e[i].dept_no);
 printf (“Enter the age of employee”);
 scanf (“%d”,&e[i].age);
 }
 for (i=1; i<=100; i++)
 {
 printf (“The employee id of employee is : %d”,

e[i].emp_id);
 printf (“The name of employee is: %s”,e[i].name);

Program to implement the Array of Structure

 printf (“The salary of employee is: %f”,
 e[i].salary);

 printf (“The address of employee is : %s”,
e[i].address);

 printf (“The department of employee is : %d”,
e[i].dept_no);

 printf (“The age of employee is : %d”, e[i].age);
 }
 getch();
 }

Structures within Structures

C language define a variable of structure type

as a member of other structure type. The

syntax to define the structure within structure is

struct <struct_name>{

<data_type> <variable_name>;

struct <struct_name>

 { <data_type>

<variable_name>;

 ……..}<struct_variable>;

<data_type> <variable_name>;

};

Example of Structure within Structure

The structure of Employee is declared as
 struct employee
 { int emp_id;
 char name[20];
 float salary;
 int dept_no;
 struct date

{ int day;
 int month;
 int year;
}doj;

};

Accessing Structures within Structures

The data member of structure within structure

is accessed by using two period (.) symbol.

The syntax to access the structure within

structure is

struct _var. nested_struct_var. struct_member;

For Example:-

e1.doj.day;

e1.doj.month;

e1.doj.year;

Pointers and Structures

C language can define a pointer variable of

structure type. The pointer variable to structure

variable is declared by using same syntax to

define a pointer variable of data type. The

syntax to define the pointer to structure

 struct <struct_name> *<pointer_var_name>;

For Example:

 struct employee *emp;

It declare a pointer variable “emp” of employee

type.

Access the Pointer in Structures

The member of structure variable is accessed

by using the pointer variable with arrow

operator() instead of period operator(.). The

syntax to access the pointer to structure.

pointer_var_namestructure_member;

For Example:

 empname;

Here “name” structure member is accessed

through pointer variable emp.

Passing Structure to Function

The structure variable can be passed to a

function as a parameter. The program to pass

a structure variable to a function.
#include <stdio.h>
#include <conio.h>
struct employee
{
int emp_id;
char name[20];
float salary;
};

Passing Structure to Function

void main ()
 {
 struct employee e1;
 printf (“Enter the employee id of employee”);
 scanf(“%d”,&e1.emp_id);
 printf (“Enter the name of employee”);
 scanf(“%s”,e1.name);
 printf (“Enter the salary of employee”);
 scanf(“%f”,&e1.salary);
 printdata (struct employee e1);
 getch();
 }

Passing Structure to Function

 void printdata(struct employee emp)
 {
 printf (“\nThe employee id of employee is :

%d”, emp.emp_id);
 printf (“\nThe name of employee is : %s”,

emp.name);
 printf (“\nThe salary of employee is : %f”,

emp.salary);
 }

Function Returning Structure

The function can return a variable of structure

type like a integer and float variable. The

program to return a structure from function.
#include <stdio.h>
#include <conio.h>
struct employee
{
int emp_id;
char name[20];
float salary;
};

Function Returning Structure

void main ()
 {
 struct employee emp;
 emp=getdata();
 printf (“\nThe employee id of employee is :

%d”, emp.emp_id);
 printf (“\nThe name of employee is : %s”,

emp.name);
 printf (“\nThe salary of employee is : %f”,

emp.salary);
 getch();
 }

Function Returning Structure

 struct employee getdata()
 {
 struct employee e1;
 printf (“Enter the employee id of employee”);
 scanf(“%d”,&e1.emp_id);
 printf (“Enter the name of employee”);
 scanf(“%s”,e1.name);
 printf (“Enter the salary of employee”);
 scanf(“%f”,&e1.salary);
 return(e1);
 }

Union Data Type

A union is a user defined data type like structure. The

union groups logically related variables into a single unit.

The union data type allocate the space equal to space

need to hold the largest data member of union. The union

allows different types of variable to share same space in

memory. There is no other difference between structure

and union than internal difference. The method to

declare, use and access the union is same as structure.

Defining of Union

A union has to defined, before it can used. The syntax of

defining a structure is

 union <union_name>

 {

 <data_type> <variable_name>;

 <data_type> <variable_name>;

 ……..

 <data_type> <variable_name>;

 };

Example of Union

The union of Employee is declared as

union employee
{
int emp_id;
char name[20];
float salary;
char address[50];
int dept_no;
int age;
};

Memory Space Allocation

8000

 emp_id, dept_no, age

8002

 salary

8004

name

8022

 address

8050

employee

Difference between Structures & Union

1)The memory occupied by structure variable is

the sum of sizes of all the members but

memory occupied by union variable is equal to

space hold by the largest data member of a

union.

2)In the structure all the members are accessed

at any point of time but in union only one of

union member can be accessed at any given

time.

Application of Structures

Structure is used in database management to

maintain data about books in library, items in

store, employees in an organization, financial

accounting transaction in company. Beside that

other application are

1)Changing the size of cursor.

2)Clearing the contents of screen.

3)Drawing any graphics shape on screen.

4)Receiving the key from the keyboard.

Application of Structures

5) Placing cursor at defined position on screen.

6) Checking the memory size of the computer.

7) Finding out the list of equipments attach to

computer.

8) Hiding a file from the directory.

9) Sending the output to printer.

10) Interacting with the mouse.

11) Formatting a floppy.

12) Displaying the directory of a disk.

 Summary

• A structure is a user defined data type that groups
logically related data items of different data types into a
single unit.

• The elements of a structure are stored at contiguous
memory locations.

• The value of one structure variable is assigned to
another variable of same type using assignment
statement.

• An array of variables of structure is created.

• A variable of structure type is defined as a member of
other structure type called nested structure.

 Summary

• The member of structure variable is accessed by pointer
variable with arrow operator ().

• The structure variable can be passed to a function as a
parameter.

• The function can return a variable of structure type.

• A union is like structure that group logically related
variables into a single unit. The union allocate the space
equal to space need to hold the largest data member of
union.

• Structure used in database management and many
more applications.

MACROS & EXAMPLES

The C preprocessor and its role

2

cpp
(C preprocessor)

cc1
(C compiler)

source
program

compiled
code

C compiler (e.g., gcc)

expanded
code

• expand some kinds of characters
• discard whitespace and comments

– each comment is replaced with a single space

• process directives:
– file inclusion (#include)
– macro expansion (#define)
– conditional compilation (#if, #ifdef, …)

#include

• Specifies that the preprocessor should read in the contents of the specified file

– usually used to read in type definitions, prototypes, etc.
– proceeds recursively

• #includes in the included file are read in as well
• Two forms:

– #include <filename>
• searches for filename from a predefined list of directories
• the list can be extended via “gcc –I dir”

– #include “filename”
• looks for filename specified as a relative or absolute path

3

#include : Example

4

a predefined include file that:
• comes with the system
• gives type declarations,

prototypes for library routines
(printf)

where does it come from?
– man 3 printf :

#include: cont’d

• We can also define our own header files:

– a header file has file-extension ‘.h’
– these header files typically contain “public” information

• type declarations
• macros and other definitions
• function prototypes

– often, the public information associated with a code file
foo.c will be placed in a header file foo.h

– these header files are included by files that need that
public information

#include “myheaderfile.h”

5

Macros

• A macro is a symbol that is recognized by the preprocessor and
replaced by the macro body

– Structure of simple macros:

#define identifier replacement_list
– Examples:

#define BUFFERSZ 1024

#define WORDLEN 64

6

Using simple macros

• We just use the macro name in place of the value, e.g.:

#define BUFLEN 1024

#define Pi 3.1416

…

char buffer[BUFLEN];

…

area = Pi * r * r;

7

NOT:
 #define BUFLEN = 1024
 #define Pi 3.1416;

Example 1

8

Example 2

9

we can “macroize”
symbols selectively

Parameterized macros

• Macros can have parameters

– these resemble functions in some ways:
• macro definition ~ formal parameters
• macro use ~ actual arguments

– Form:

#define macroName(arg1, …, argn) replacement_list

– Example:

#define deref(ptr) *ptr

#define MAX(x,y) x > y ? x : y

10

no space here!
(else preprocessor will
assume we’re defining

a simple macro

Example

11

Macros vs. functions

• Macros may be (slightly) faster

– don’t incur the overhead of function call/return
– however, the resulting code size is usually larger

• this can lead to loss of speed
• Macros are “generic”

– parameters don’t have any associated type
– arguments are not type-checked

• Macros may evaluate their arguments more than once

– a function argument is only evaluated once per call

12

Macros vs. Functions: Argument Evaluation

• Macros and functions may behave differently if an argument is referenced multiple times:

– a function argument is evaluated once, before the call
– a macro argument is evaluated each time it is encountered

in the macro body.
• Example:

13

int dbl(x) { return x + x;}
…
u = 10; v = dbl(u++);
printf(“u = %d, v = %d”, u, v);

 prints: u = 11, v = 20

#define Dbl(x) x + x
…
u = 10; v = Dbl(u++);
printf(“u = %d, v = %d”, u, v);

 prints: u = 12, v = 21

Dbl(u++)
expands to:
u++ + u++

Properties of macros

• Macros may be nested

– in definitions, e.g.:

#define Pi 3.1416

#define Twice_Pi 2*Pi
– in uses, e.g.:

#define double(x) x+x

#define Pi 3.1416

…

if (x > double(Pi)) …
• Nested macros are expanded recursively

14

Header Files

• Have a file extension “.h”

• Contain shared definitions

– typedefs
– macros
– function prototypes

• referenced via “#include” directives

15

Header files: example

16

typedefs

• Allow us to define aliases for types

• Syntax:

 typedef old_type_name new_type_name;
• new_type_name becomes an alias for old_type_name

• Example:

– typedef int BasePay;
– typedef struct node {

 int value;

 struct node *next;

 } node;

17

Example

18

defines “wcnode” as an
alias for “struct wc”

we can use “wcnode” in
place of“struct wc”

but not here, since
“wcnode” has not yet

been defined

What if a file is #included multiple times?

19

foo.h

bar1.h bar2.h

bar.c

Conditional Compilation: #ifdef

#ifdef identifier
line1

…

linen

#endif
• macros can be defined by the compiler:

– gcc –D macroName
– gcc –D macroName=definition

• macros can be defined without giving them a specific
value, e.g.:
– #define macroName

20

line1 … linen will be included if
identifier has been defined as a
macro; otherwise nothing will

happen.

Conditional Compilation: #ifndef

#ifndef identifier

line1

…

linen

#endif

21

line1 … linen will be
included if identifier
is NOT defined as a
macro; otherwise

nothing will happen.

Solution to multiple inclusion problem

The header file is written as follows:

#ifndef file_specific_flag

#define file_specific_flag

…contents of file…

#endif
• file_specific_flag usually constructed from the name of the header file:

E.g.: file = foo.h ⇒ flag = _FOO_H_
– try to avoid macro names starting with ‘_’

22

indicates whether or
not this file has been

included already

Another use of #ifdefs

• They can be useful for controlling debugging output

– Example 1: guard debugging code with #ifdefs:
#ifdef DEBUG

…debug message…

#endif

– Example 2: use the debug macro to control what
debugging code appears in the program:

#ifdef DEBUG

#define DMSG(msg) printf(msg) // debugging output

#else

#define DMSG(msg) {} // empty statement

#endif

23

straightforward, but needs
discipline to use consistently

Generalizing #ifdef

#if constant-expression

line1

…

linen

#endif

⇒ line1 … linen included if constant-expression evaluates to a non-zero value

24

Common uses:
• #if 1
or
• #if 0

__LINE__ current line number of the source file
__FILE__ name of the current source file
__TIME__ time of translation
__STDC__ 1 if the compiler conforms to ANSI C

printf("working on %s\n", __FILE__);

Predefined Macros

	Structures & Unions
	5module-preprocessorandmacros-140329092016-phpapp02
	CSc 352 An Introduction to the C Preprocessor
	The C preprocessor and its role
	#include
	#include : Example
	#include: cont’d
	Macros
	Using simple macros
	Example 1
	Example 2
	Parameterized macros
	Example
	Macros vs. functions
	Macros vs. Functions: Argument Evaluation
	Properties of macros
	Header Files
	Header files: example
	typedefs
	Slide 18
	What if a file is #included multiple times?
	Conditional Compilation: #ifdef
	Conditional Compilation: #ifndef
	Slide 22
	Another use of #ifdefs
	Generalizing #ifdef
	Slide 25
	Slide 26

