
OBJECT ORIENTED CONCEPTS - FEATURES

MODULE V

BCSE102L –Structured and Object oriented Programming

(Theory)

CLASS & OBJECTCLASS & OBJECT

 Class: A Class is a user defined data type to Class: A Class is a user defined data type to
implement an abstract object. Abstract means implement an abstract object. Abstract means
to hide the details. A Class is a combination of to hide the details. A Class is a combination of
data and functions. data and functions.

 Data is called as data members and functions Data is called as data members and functions
are called as member functions.are called as member functions.

 Abstract data type:-Abstract data type:-
 A data type that separates the logical properties A data type that separates the logical properties

from the implementation details called Abstract from the implementation details called Abstract
Data Type(ADT).Data Type(ADT).

 An abstract data type is a set of object and an An abstract data type is a set of object and an
associated set of operations on those objects.associated set of operations on those objects.

 ADT supports data abstraction, encapsulation and ADT supports data abstraction, encapsulation and
data hiding.data hiding.

 Examples of ADT are:-Examples of ADT are:-
 Boolean Boolean
 IntegerInteger built in ADTbuilt in ADT
 ArrayArray
 StackStack
 QueueQueue
 Tree search structureTree search structure User defined User defined

ADTADT
 Boolean {operations are AND,OR,NOT and Boolean {operations are AND,OR,NOT and

values are true and false}values are true and false}
 Queues{operations are create , dequeue,inqueue and Queues{operations are create , dequeue,inqueue and

values are queue elements}values are queue elements}

Class definitionClass definition

 A class definition begins with the keyword A class definition begins with the keyword
classclass..

 The body of the class is contained within a set The body of the class is contained within a set
of braces, of braces, { } ; { } ; (notice the semi-colon).(notice the semi-colon).

class class_name
{

….
….
….
};

Class body (data member +
methodsmethods)

Any valid
identifier

 Within the body, the keywords Within the body, the keywords private:private: and and
public:public: specify the access level of the specify the access level of the
members of the class.members of the class.
 the default is the default is privateprivate..

 Usually, the data members of a class are Usually, the data members of a class are
declared in the declared in the private:private: section of the class and section of the class and
the member functions are in the member functions are in public:public: section. section.

 Data member or member functions may be public, Data member or member functions may be public,
private or protected.private or protected.

 Public means data members or member functions Public means data members or member functions
defining inside the class can be used at outside the defining inside the class can be used at outside the
class.(in different class and in main function)class.(in different class and in main function)

 Member access specifiersMember access specifiers
 public: public:

 can be accessed outside the class directly.can be accessed outside the class directly.
 The public stuff is The public stuff is the interfacethe interface..

 private:private:
 Accessible only to member functions of classAccessible only to member functions of class
 Private members and methods are for internalPrivate members and methods are for internal use only.use only.

 Private means data members and member functions Private means data members and member functions
can’t be used outside the class.can’t be used outside the class.

 Protected means data member and member Protected means data member and member
functions can be used in the same class and its functions can be used in the same class and its
derived class (at one level) (not inmain function).derived class (at one level) (not inmain function).

PRIVATE

PUBLIC

class class_name
{
 private:

…
…
…

 public:
…
…
…

};

Public members or methods

private members or methods

 This class example shows how we can This class example shows how we can
encapsulate (gather) a circle information into encapsulate (gather) a circle information into
one package (unit or class) one package (unit or class)

class Circle
{
 private:

double radius;
 public:

void setRadius(double r);
double getDiameter();

double getArea();
double getCircumference();

};

No need for others classes to access
and retrieve its value directly. The
class methods are responsible for
that only.

They are accessible from outside
the class, and they can access the
member (radius)

Class Example (Problem)Class Example (Problem)

#include<iostream.h>#include<iostream.h>
class studentclass student
{{
int rollno;int rollno;
char name[20];char name[20];
};};

void main()void main()
{{
student s;student s;
cout<<“enter the rollno.:”;cout<<“enter the rollno.:”;
cin>>s.rollno;cin>>s.rollno;
cout<<“enter the name:”;cout<<“enter the name:”;
gets(s.name);gets(s.name);
cout<<“rollno:”<<s.rollno;cout<<“rollno:”<<s.rollno;
cout<<“\nname:”;cout<<“\nname:”;
puts(s.name);puts(s.name);
}}

Class Example (Solution)Class Example (Solution)

#include<iostream.h>#include<iostream.h>
class studentclass student
{{
public:public:
int rollno;int rollno;
char name[20];char name[20];
};};

void main()void main()
{{
student s;student s;
cout<<“enter the rollno.:”;cout<<“enter the rollno.:”;
cin>>s.rollno;cin>>s.rollno;
cout<<“enter the name:”;cout<<“enter the name:”;
gets(s.name);gets(s.name);
cout<<“rollno:”<<s.rollno;cout<<“rollno:”<<s.rollno;
cout<<“\nname:”;cout<<“\nname:”;
puts(s.name);puts(s.name);
}}

Implementing class methodsImplementing class methods
 There are two ways:There are two ways:

1.1. Member functions defined outside classMember functions defined outside class
 Using Binary scope resolution operator (Using Binary scope resolution operator (::::))
 ““Ties” member name to class nameTies” member name to class name
 Uniquely identify functions of particular classUniquely identify functions of particular class
 Different classes can have member functions with same nameDifferent classes can have member functions with same name

 Format for defining member functionsFormat for defining member functions
ReturnTypeReturnType ClassNameClassName::::MemberFunctionNameMemberFunctionName(){(){

……
}}

Member Function Member Function
Defining Inside the ClassDefining Inside the Class

#include<iostream.h>#include<iostream.h>
class studentclass student
{{
int rollno;int rollno;
char name[20];char name[20];
public:public:
void getdata()void getdata()
{{
cout<<“enter the rollno.:”;cout<<“enter the rollno.:”;
cin>>rollno;cin>>rollno;
cout<<“enter the name:”;cout<<“enter the name:”;
gets(name);gets(name);
}}
void putdata()void putdata()
{{
cout<<“rollno:”<<rollno;cout<<“rollno:”<<rollno;
cout<<“\nname:”;cout<<“\nname:”;
puts(name);puts(name);
}}
};};
void main()void main()
{{
student s;student s;
s.getdata();s.getdata();
s.putdata();s.putdata();
}}

Data Members (Private : in this example)

Member Functions (Public: in this example)

Calling member function

Member Function Member Function
Defining Outside the ClassDefining Outside the Class

#include<iostream.h>#include<iostream.h
class studentclass student
{{
int rollno;int rollno;
char name[20];char name[20];
public:public:
void getdata();void getdata();
void putdata();void putdata();
};};
void student :: getdata()void student :: getdata()
{{
cout<<“enter the rollno.:”;cout<<“enter the rollno.:”;
cin>>rollno;cin>>rollno;
cout<<“enter the name:”;cout<<“enter the name:”;
gets(name);gets(name);
}}

void student: :: putdata()void student: :: putdata()
{{
cout<<“rollno:”<<rollno;cout<<“rollno:”<<rollno;
cout<<“\nname:”;cout<<“\nname:”;
puts(name);puts(name);
}}
void main()void main()
{{
student s;student s;
s.getdata();s.getdata();
s.putdata();s.putdata();
}}

Characteristics of member Characteristics of member
functionfunction

 Different classes have same function name. the Different classes have same function name. the
“membership label” will resolve their scope.“membership label” will resolve their scope.

 Member functions can access the private data of the Member functions can access the private data of the
class .a non member function cannot do this.(friend class .a non member function cannot do this.(friend
function can do this.)function can do this.)

 A member function can call another member function A member function can call another member function
directly, without using the dot operator.directly, without using the dot operator.

Accessing Class MembersAccessing Class Members

 Operators to access class membersOperators to access class members
 Identical to those for Identical to those for structstructss
 Dot member selection operator (Dot member selection operator (..))

 ObjectObject
 Reference to objectReference to object

 Arrow member selection operator (Arrow member selection operator (->->))
 PointersPointers

Static members Static members
 The data and functions of the class may be declared static in The data and functions of the class may be declared static in

the class declaration.the class declaration.

 The static data members have similar properties to the C static The static data members have similar properties to the C static
variable.variable.

 The static data members is initialized with zero when the first The static data members is initialized with zero when the first
object of its class is created. No other initialization is object of its class is created. No other initialization is
permitted.permitted.

 Only one copy of that member is created for the entire class Only one copy of that member is created for the entire class
and is shared by all the objects of that class, no matter how and is shared by all the objects of that class, no matter how
many objects are created.many objects are created.

 It is visible only within the class, but its lifetime is the entire It is visible only within the class, but its lifetime is the entire
program.program.

Static member functionStatic member function

 Like static data members we can also declare static Like static data members we can also declare static
member functions.member functions.

 A static function can have access to only other static A static function can have access to only other static
members(functions or variables) declared in the members(functions or variables) declared in the
same class.same class.

 A static member function can be called using the A static member function can be called using the
class (instead of its objects) as folowsclass (instead of its objects) as folows

 Class name:: function name.Class name:: function name.

Example of static membersExample of static members
#inlcude<iostream.h>#inlcude<iostream.h>
Class testClass test
{{

Int code;Int code;
Static int count;Static int count;
Public:Public:
Void setcode()Void setcode()
{{
Code=++count;Code=++count;
}}
Void showcode()Void showcode()
{{
Cout<<“object number “<<code<<endl;Cout<<“object number “<<code<<endl;
}}
Static void showcount()Static void showcount()
{{

Cout<<“count :”<<count;Cout<<“count :”<<count;
}}
};};

Int test::count;Int test::count;
Int main()Int main()
{{

test t1,t2;test t1,t2;
t1.setcode();t1.setcode();
t2.setcode();t2.setcode();
test::showcount();test::showcount();
test t3;test t3;
t3.setcode();t3.setcode();
test::showcount();test::showcount();
t1.showcode();t1.showcode();
t2.showcode();t2.showcode();
t3.showcode();t3.showcode();

Return 0;Return 0;
}}

Class inside a functionClass inside a function

 When a class declared within a function, it is known as When a class declared within a function, it is known as
local classlocal class..

 A local class is known only to that function and A local class is known only to that function and
unknown outside it.unknown outside it.

 All member functions must be defined within the class All member functions must be defined within the class
declaration.declaration.

 The local class may not use local variables of the The local class may not use local variables of the
function in which it is declared except static and extern function in which it is declared except static and extern
local variables declared within the function.local variables declared within the function.

 No static variables may be declared inside a local class.No static variables may be declared inside a local class.
 Due to these restrictions local class is not popular in C++ Due to these restrictions local class is not popular in C++

programming.programming.

Objects Objects

 An object is an instance of a class.An object is an instance of a class.

 An object is a class variable.An object is a class variable.

 Is can be uniquely identified by its name.Is can be uniquely identified by its name.

 Every object have a state which is represented by the Every object have a state which is represented by the
values of its attributes. These state are changed by values of its attributes. These state are changed by
function which applied on the object.function which applied on the object.

State identity and behavior of State identity and behavior of
objectsobjects

 Every object have Every object have identity , behaviour and stateidentity , behaviour and state..

 The identity of object The identity of object is defined by its name, every is defined by its name, every
object is unique and can be differentiated from other object is unique and can be differentiated from other
objects.objects.

 The behavior of The behavior of an object is represented by the an object is represented by the
functions which are defined in the object’s class. These functions which are defined in the object’s class. These
function show the set of action for every objects.function show the set of action for every objects.

 The state of objects The state of objects are referred by the data stored are referred by the data stored
within the object at any time moment.within the object at any time moment.

Creating an object of a ClassCreating an object of a Class
 Declaring a variable of a class type creates an Declaring a variable of a class type creates an objectobject. You . You

can have many variables of the same type (class).can have many variables of the same type (class).
 Also known as InstantiationAlso known as Instantiation

 Once an object of a certain class is instantiated, a new Once an object of a certain class is instantiated, a new
memory location is created for it to store its data members memory location is created for it to store its data members
and codeand code

 You can instantiate many objects from a class type.You can instantiate many objects from a class type.
 Ex) Circle c; Circle *c; Ex) Circle c; Circle *c;
Class itemClass item
{{

………………..
,,,,,,,,,,,,,,,,,,,,,,,,,,
}x,y,z;}x,y,z;

We have to declared objects close to the place where they are needed We have to declared objects close to the place where they are needed
because it makes easier to identify the objects.because it makes easier to identify the objects.

Object typesObject types
 There are four types of objectsThere are four types of objects
1.1. External (global)objectsExternal (global)objects

1.1. This object have the existence throughout the lifetime of the program and This object have the existence throughout the lifetime of the program and
having file –scope.having file –scope.

2.2. Automatic(local)objectsAutomatic(local)objects
1.1. Persistent and visible only throughout the local scope in which they are Persistent and visible only throughout the local scope in which they are

created.created.

3.3. Static objectsStatic objects
1.1. Persistent throughout a program but only visible within their local scope.Persistent throughout a program but only visible within their local scope.

4.4. Dynamic objectsDynamic objects
1.1. Lifetime may be controlled within a particular scope.Lifetime may be controlled within a particular scope.

Memory Allocation of ObjectMemory Allocation of Object

class studentclass student

{{

int rollno;int rollno;

char name[20];char name[20];

int marks;int marks;

}; };

student s;student s;

rollno – 2 bytes

name- 20 bytes

marks- 2 bytes

24 bytes s

Array of objectsArray of objects

 The array of class type variable is known as array of The array of class type variable is known as array of
object.object.

 We can declare array of object as following way:-We can declare array of object as following way:-
Class _name object [length];Class _name object [length];

Employee manager[3];Employee manager[3];

1.1. We can use this array when calling a member functionWe can use this array when calling a member function

2.2. Manager[i].put data();Manager[i].put data();

3.3. The array of object is stored in memory as a multi-The array of object is stored in memory as a multi-
dimensional array.dimensional array.

Object as function argumentsObject as function arguments

 This can be done in two ways:-This can be done in two ways:-

 A copy of entire object is passed to the function.A copy of entire object is passed to the function.
 (pass by value)(pass by value)

 Only the address of the object is transferred to the Only the address of the object is transferred to the
function. (pass by reference)function. (pass by reference)

(pass by value)(pass by value)

 A copy of the object is passed to the function, any A copy of the object is passed to the function, any
changes made to the object inside the function do not changes made to the object inside the function do not
affect the object used to call function.affect the object used to call function.

 When an address of object is passed, the called When an address of object is passed, the called
function works directly on the actual object used in function works directly on the actual object used in
the call. Means that any change made in side the the call. Means that any change made in side the
function will reflect in the actual object.function will reflect in the actual object.

(pass by reference)

Passing ObjectPassing Object
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
void sum (Complex A, Complex B);void sum (Complex A, Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

void Complex : : sum (complex A, complex B)void Complex : : sum (complex A, complex B)

{{

real = A.real + B.real;real = A.real + B.real;

imag= A.imag + B.imag;imag= A.imag + B.imag;

}}

void main()void main()

{{

Complex X,Y,Z;Complex X,Y,Z;

X.getdata();X.getdata();

Y.getdata();Y.getdata();

Z.sum(X,Y);Z.sum(X,Y);

Z.putdata();Z.putdata();

}}

Passing ObjectPassing Object
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
void sum (Complex A, Complex B);void sum (Complex A, Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

void Complex : : sum (Complex A, Complex B)void Complex : : sum (Complex A, Complex B)

{{

real = A.real + B.real;real = A.real + B.real;

imag= A.imag + B.imag;imag= A.imag + B.imag;

}}

void main()void main()

{{

Complex X,Y,Z;Complex X,Y,Z;

X.getdata();X.getdata();

Y.getdata();Y.getdata();

Z.sum(X,Y);Z.sum(X,Y);

Z.putdata();Z.putdata();

}}

X Y Z

JBB, 06/04/2009

Passing ObjectPassing Object
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
void sum (Complex A, Complex B);void sum (Complex A, Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

void Complex : : sum (Complex A, Complex B)void Complex : : sum (Complex A, Complex B)

{{

real = A.real + B.real;real = A.real + B.real;

imag= A.imag + B.imag;imag= A.imag + B.imag;

}}

void main()void main()

{{

Complex X,Y,Z;Complex X,Y,Z;

X.getdata();X.getdata();

Y.getdata();Y.getdata();

Z.sum(X,Y);Z.sum(X,Y);

Z.putdata();Z.putdata();

}}

5
6

7
8

X Y Z

JBB, 06/04/2009

Passing ObjectPassing Object
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
void sum (Complex A, Complex B);void sum (Complex A, Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

void Complex : : sum (Complex A, Complex B)void Complex : : sum (Complex A, Complex B)

{{

real = A.real + B.real;real = A.real + B.real;

imag= A.imag + B.imag;imag= A.imag + B.imag;

}}

void main()void main()

{{

Complex X,Y,Z;Complex X,Y,Z;

X.getdata();X.getdata();

Y.getdata();Y.getdata();

Z.sum(X,Y);Z.sum(X,Y);

Z.putdata();Z.putdata();

}}

5
6

7
8

X Y Z

5
6

7
8

A B

JBB, 06/04/2009

Passing ObjectPassing Object
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
void sum(Complex A, Complex B);void sum(Complex A, Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

void Complex : : sum (Complex A, Complex B)void Complex : : sum (Complex A, Complex B)

{{

real = A.real + B.real;real = A.real + B.real;

imag= A.imag + B.imag;imag= A.imag + B.imag;

}}

void main()void main()

{{

Complex X,Y,Z;Complex X,Y,Z;

X.getdata();X.getdata();

Y.getdata();Y.getdata();

Z.sum(X,Y);Z.sum(X,Y);

Z.putdata();Z.putdata();

}}

5
6

7
8

12
14

X Y Z

5
6

7
8

A B

+

+

=

=

JBB, 06/04/2009

Passing ObjectPassing Object
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
void sum (Complex A, Complex B);void sum (Complex A, Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

void complex : : sum (Complex A, Complex B)void complex : : sum (Complex A, Complex B)
{{
real = A.real + B.real;real = A.real + B.real;
imag= A.imag + B.imag;imag= A.imag + B.imag;
}}

void main()void main()
{{
Complex X,Y,Z;Complex X,Y,Z;
X.getdata();X.getdata();
Y.getdata();Y.getdata();
Z.sum(X,Y);Z.sum(X,Y);
Z.putdata();Z.putdata();
 }}

12 + 14 i12 + 14 i

5
6

7
8

12
14

X Y Z

5
6

7
8

A B

+

+

=

=

JBB, 06/04/2009

Returning ObjectReturning Object
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
Complex sum (Complex B);Complex sum (Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

Complex Complex : : sum (Complex B)Complex Complex : : sum (Complex B)
{{
Complex temp;Complex temp;
temp.real=real + B.real;temp.real=real + B.real;
temp.imag= imag + B.imag;temp.imag= imag + B.imag;
return temp;return temp;
}}
void main ()void main ()
{{
Complex X, Y, Z;Complex X, Y, Z;
X.Getdata();X.Getdata();
Y. getdata();Y. getdata();
Z= X.sum (Y);Z= X.sum (Y);
Z.putdata();Z.putdata();
}}

Returning ObjectReturning Object
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
Complex sum (Complex B);Complex sum (Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

Complex Complex : : sum (Complex B)Complex Complex : : sum (Complex B)
{{
Complex temp;Complex temp;
temp.real=real + B.real;temp.real=real + B.real;
temp.imag= imag + B.imag;temp.imag= imag + B.imag;
return temp;return temp;
}}
void main ()void main ()
{{
Complex X, Y, Z;Complex X, Y, Z;
X.Getdata();X.Getdata();
Y. getdata();Y. getdata();
Z= X.sum (Y);Z= X.sum (Y);
Z.putdata();Z.putdata();
}}

X Y Z

Returning ObjectReturning Object
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
Complex sum (Complex B);Complex sum (Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

Complex Complex : : sum (Complex B)Complex Complex : : sum (Complex B)
{{
Complex temp;Complex temp;
temp.real=real + B.real;temp.real=real + B.real;
temp.imag= imag + B.imag;temp.imag= imag + B.imag;
return temp;return temp;
}}
void main ()void main ()
{{
Complex X, Y, Z;Complex X, Y, Z;
X.Getdata();X.Getdata();
Y. getdata();Y. getdata();
Z= X.sum (Y);Z= X.sum (Y);
Z.putdata();Z.putdata();
}}

5
6

7
8

X Y Z

Returning ObjectReturning Object
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
Complex sum (Complex B);Complex sum (Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

Complex Complex : : sum (Complex B)Complex Complex : : sum (Complex B)
{{
Complex temp;Complex temp;
temp.real=real + B.real;temp.real=real + B.real;
temp.imag= imag + B.imag;temp.imag= imag + B.imag;
return temp;return temp;
}}
void main ()void main ()
{{
Complex X, Y, Z;Complex X, Y, Z;
X.Getdata();X.Getdata();
Y. getdata();Y. getdata();
Z= X.sum (Y);Z= X.sum (Y);
Z.putdata();Z.putdata();
}}

5
6

7
8

X Y Z

7
8

B

Returning ObjectReturning Object
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
Complex sum (Complex B);Complex sum (Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

Complex Complex : : sum (Complex B)Complex Complex : : sum (Complex B)
{{
Complex temp;Complex temp;
temp.real=real + B.real;temp.real=real + B.real;
temp.imag= imag + B.imag;temp.imag= imag + B.imag;
return temp;return temp;
}}
void main ()void main ()
{{
Complex X, Y, Z;Complex X, Y, Z;
X.Getdata();X.Getdata();
Y. getdata();Y. getdata();
Z= X.sum (Y);Z= X.sum (Y);
Z.putdata();Z.putdata();
}}

5
6

7
8

X Y Z

7
8

B

Returning ObjectReturning Object
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
Complex sum (Complex B);Complex sum (Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

Complex Complex : : sum (Complex B)Complex Complex : : sum (Complex B)
{{
Complex temp;Complex temp;
temp.real=real + B.real;temp.real=real + B.real;
temp.imag= imag + B.imag;temp.imag= imag + B.imag;
return temp;return temp;
}}
void main ()void main ()
{{
Complex X, Y, Z;Complex X, Y, Z;
X.Getdata();X.Getdata();
Y. getdata();Y. getdata();
Z= X.sum (Y);Z= X.sum (Y);
Z.putdata();Z.putdata();
}}

5
6

7
8

X Y Z

7
8

B

12
14

temp

Returning ObjectReturning Object
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
Complex sum (Complex B);Complex sum (Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

Complex Complex : : sum (Complex B)Complex Complex : : sum (Complex B)
{{
Complex temp;Complex temp;
temp.real=real + B.real;temp.real=real + B.real;
temp.imag= imag + B.imag;temp.imag= imag + B.imag;
return temp;return temp;
}}
void main ()void main ()
{{
Complex X, Y, Z;Complex X, Y, Z;
X.Getdata();X.Getdata();
Y. getdata();Y. getdata();
Z= X.sum (Y);Z= X.sum (Y);
Z.putdata();Z.putdata();
}}

5
6

7
8

X Y Z

7
8

B

12
14

temp

Returning ObjectReturning Object
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
Complex sum (Complex B);Complex sum (Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

Complex Complex : : sum (Complex B)Complex Complex : : sum (Complex B)
{{
Complex temp;Complex temp;
temp.real=real + B.real;temp.real=real + B.real;
temp.imag= imag + B.imag;temp.imag= imag + B.imag;
return temp;return temp;
}}
void main ()void main ()
{{
Complex X, Y, Z;Complex X, Y, Z;
X.Getdata();X.Getdata();
Y. getdata();Y. getdata();
Z= X.sum (Y);Z= X.sum (Y);
Z.putdata();Z.putdata();
}}

5
6

7
8

12
14

X Y Z

7
8

B

12
14

temp

Returning ObjectReturning Object
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
Complex sum (Complex B);Complex sum (Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

Complex Complex : : sum (Complex B)Complex Complex : : sum (Complex B)
{{
Complex temp;Complex temp;
temp.real=real + B.real;temp.real=real + B.real;
temp.imag= imag + B.imag;temp.imag= imag + B.imag;
return temp;return temp;
}}
void main ()void main ()
{{
Complex X, Y, Z;Complex X, Y, Z;
X.Getdata();X.Getdata();
Y. getdata();Y. getdata();
Z= X.sum (Y);Z= X.sum (Y);
Z.putdata();Z.putdata();
}}

12 + 14 i12 + 14 i

5
6

7
8

12
14

X Y Z

7
8

B

12
14

temp

C++ garbage collectionC++ garbage collection

 In c++ the garbage collection task is accomplised by In c++ the garbage collection task is accomplised by
mark and sweep algorithm.mark and sweep algorithm.

 In this approach the garbage collector periodically In this approach the garbage collector periodically
examines every single pointer in our program and examines every single pointer in our program and
find that the memory is still in use. At the end of the find that the memory is still in use. At the end of the
cycle, any memory that has not been marked is cycle, any memory that has not been marked is
deemed to be not in use and is freed.deemed to be not in use and is freed.

Steps to implement the garbage Steps to implement the garbage
collectioncollection

 Mark and sweep algorithm could be implemented in c++ Mark and sweep algorithm could be implemented in c++
if we arere willing to do the following:if we arere willing to do the following:

1.1. Register all pointers with the garbage collector so that it Register all pointers with the garbage collector so that it
can easily walk through the list of all pointers.can easily walk through the list of all pointers.

2.2. Sub-class all objects from a mix-in class, that allows the Sub-class all objects from a mix-in class, that allows the
garbage collectors to mark an object as in-use.garbage collectors to mark an object as in-use.

3.3. Protect concurrent access to objects by making sure that Protect concurrent access to objects by making sure that
no changes to pointers can occur while the garbage no changes to pointers can occur while the garbage
collector is running.collector is running.

Memory management in c++Memory management in c++
 Ways of memory allocation in c++Ways of memory allocation in c++
 Static memory allocationStatic memory allocation

 The memory allocation for variables ,during compilation time The memory allocation for variables ,during compilation time
itself is known as static memory allocation.itself is known as static memory allocation.

 Once the memory allocated at the compile time then it can not Once the memory allocated at the compile time then it can not
be expanded nor be compressed to accommodate more or less be expanded nor be compressed to accommodate more or less
data during program execution.data during program execution.

 The size of memory to be allocated is known before compile The size of memory to be allocated is known before compile
time and is fixed it can not be altered during execution.time and is fixed it can not be altered during execution.

 Int a[10];Int a[10];

Dynamic memory allocationDynamic memory allocation

 The dynamic memory allocation is carried-out in The dynamic memory allocation is carried-out in
c++ using two operators “new” and “delete”.these c++ using two operators “new” and “delete”.these
operators are use to allocate and free memory at operators are use to allocate and free memory at
run time.run time.

 Dynamic memory allocation helps in memory Dynamic memory allocation helps in memory
saving and easy to change memory allocation.saving and easy to change memory allocation.

 In c++ dynamic memory allocation is control by In c++ dynamic memory allocation is control by
NEW and DELETE operator.NEW and DELETE operator.

 The new operator return the memory pointer to the The new operator return the memory pointer to the
pointer variable.pointer variable.

 Syntax:Syntax:
Ptr= new data type;Ptr= new data type;
Delete Ptr;Delete Ptr;
Ptr is pointer and data type is valid data typePtr is pointer and data type is valid data type

 The difference between NEW and malloc function is that The difference between NEW and malloc function is that
NEW automatically calculates the size of operand , dos not NEW automatically calculates the size of operand , dos not
use size of operator and NEW does not require an explicit use size of operator and NEW does not require an explicit
type cast.type cast.

 Versions of NEW and DELETEVersions of NEW and DELETE
 in c++ NEW and DELTE should be used like malloc and free to in c++ NEW and DELTE should be used like malloc and free to

ensure the proper calling of constuctor and destructor for the ensure the proper calling of constuctor and destructor for the
classes.classes.

 Both have two versions Both have two versions
1.1. NEW and DeleteNEW and Delete
2.2. NEW[] and DELETE []NEW[] and DELETE []

 First two are for pointers to single objects, and last two for First two are for pointers to single objects, and last two for
arrays of objects.arrays of objects.

Difference between static and Difference between static and
dynamic memory allocationdynamic memory allocation

Static memory allocation Dynamic memory allocation

Static memory is allocated automatically
by compiler when definition statements
are encountered.

Dynamic memory is allocated only when
there is explicit call to malloc, calloc or
realloc function.

To make static memory allocation , the
amount of the memory space to be
reserved should be known at the run time.

Amount of memory to be reserved can be
given at the run time.

In static memory allocation sometimes
memory wastage occurs because memory
is already known and it can not change.

Memory wastage is avoided due to
memory allocation occur at run time.

Memory allocated at the compile time has
static lifetime.

Memory allocated at run time has
dynamic lifetime.

Its is faster it is slower

Meta class Meta class

 a a meta classmeta class is a is a classclass whose instances are classes. whose instances are classes.
Just as an ordinary class defines the behavior of Just as an ordinary class defines the behavior of
certain objects, a meta class defines the behavior of certain objects, a meta class defines the behavior of
certain classes and their instances.certain classes and their instances.

 a meta class is defines as class of the class.a meta class is defines as class of the class.

 A meta class hold the attributes and function which A meta class hold the attributes and function which
will appli to the class itself therefore it is class of will appli to the class itself therefore it is class of
class.class.

http://en.wikipedia.org/wiki/Class_%28computer_science%29

Friend functionFriend function

 C++ allows a way through which a function can C++ allows a way through which a function can
access the private data of a class.access the private data of a class.

 Such a function need not be a class member, it may Such a function need not be a class member, it may
be member function of another class or may be non be member function of another class or may be non
member function.member function.

 This function is called FRIEND FUNCTION. The This function is called FRIEND FUNCTION. The
declaration should be preceded by keyword declaration should be preceded by keyword
FRIEND.FRIEND.

Class PQrClass PQr

{{
Private:Private:

………………

Public:Public:

…………

…………

Friend void abc();Friend void abc();

};};

 The function is defined The function is defined
elsewhere in the program like elsewhere in the program like
normal function.normal function.

 Function definition does not use Function definition does not use
either keyword FRIEND or either keyword FRIEND or
scope operator.scope operator.

 Functions that are declared with Functions that are declared with
FRIEND keyword are known as FRIEND keyword are known as
friend functions.friend functions.

 A function can declared as friend in number of class.A function can declared as friend in number of class.

 A friend function has full access right to access the A friend function has full access right to access the
private members of class.private members of class.

 Member function of one class can be friend of Member function of one class can be friend of
another class.another class.

Characteristics Characteristics

 It is not in the scope of the class in which it has been It is not in the scope of the class in which it has been
declared as friend.declared as friend.

 it is not in the scope of class so it cannot be called it is not in the scope of class so it cannot be called
using object of that class.using object of that class.

 It can be invoked like normal function ,without It can be invoked like normal function ,without
object.object.

 It can be declared either in public or private part with It can be declared either in public or private part with
out affecting its meaning.out affecting its meaning.

 Usually, it has the objects as arguments.Usually, it has the objects as arguments.

 Unlike member function, it cannot access the member Unlike member function, it cannot access the member
names directly and has to use an object name and dot names directly and has to use an object name and dot
membership operator with each name. like membership operator with each name. like
 A.hA.h

Friend FunctionFriend Function
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
friend Complex sum (Complex A, Complex B);friend Complex sum (Complex A, Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

Complex sum (Complex A, Complex B)Complex sum (Complex A, Complex B)
{{
Complex temp;Complex temp;
temp.real=A.real + B.real;temp.real=A.real + B.real;
temp.imag= A.imag + B.imag;temp.imag= A.imag + B.imag;
return temp;return temp;
}}
void main ()void main ()
{{
Complex X, Y, Z;Complex X, Y, Z;
X.Getdata();X.Getdata();
Y. getdata();Y. getdata();
Z= sum (X,Y);Z= sum (X,Y);
Z.putdata();Z.putdata();
}}

Friend FunctionFriend Function
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
friend Complex sum (Complex A, Complex B);friend Complex sum (Complex A, Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

Complex sum (Complex A, Complex B)Complex sum (Complex A, Complex B)
{{
Complex temp;Complex temp;
temp.real=A.real + B.real;temp.real=A.real + B.real;
temp.imag= A.imag + B.imag;temp.imag= A.imag + B.imag;
return temp;return temp;
}}
void main ()void main ()
{{
Complex X, Y, Z;Complex X, Y, Z;
X.Getdata();X.Getdata();
Y. getdata();Y. getdata();
Z= sum (X,Y);Z= sum (X,Y);
Z.putdata();Z.putdata();
}}

X Y Z

Friend FunctionFriend Function
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
friend Complex sum (Complex A, Complex B);friend Complex sum (Complex A, Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

Complex sum (Complex A, Complex B)Complex sum (Complex A, Complex B)
{{
Complex temp;Complex temp;
temp.real=A.real + B.real;temp.real=A.real + B.real;
temp.imag= A.imag + B.imag;temp.imag= A.imag + B.imag;
return temp;return temp;
}}
void main ()void main ()
{{
Complex X, Y, Z;Complex X, Y, Z;
X.Getdata();X.Getdata();
Y. getdata();Y. getdata();
Z= sum (X,Y);Z= sum (X,Y);
Z.putdata();Z.putdata();
}}

5
6

7
8

X Y Z

Friend FunctionFriend Function
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
friend Complex sum (Complex A, Complex B);friend Complex sum (Complex A, Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

Complex sum (Complex A, Complex B)Complex sum (Complex A, Complex B)
{{
Complex temp;Complex temp;
temp.real=A.real + B.real;temp.real=A.real + B.real;
temp.imag= A.imag + B.imag;temp.imag= A.imag + B.imag;
return temp;return temp;
}}
void main ()void main ()
{{
Complex X, Y, Z;Complex X, Y, Z;
X.Getdata();X.Getdata();
Y. getdata();Y. getdata();
Z= sum (X,Y);Z= sum (X,Y);
Z.putdata();Z.putdata();
}}

5
6

7
8

X Y Z

7
8

B

5
6

A

Friend FunctionFriend Function
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
friend Complex sum (Complex A, Complex B);friend Complex sum (Complex A, Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

Complex sum (Complex A, Complex B)Complex sum (Complex A, Complex B)
{{
Complex temp;Complex temp;
temp.real=A.real + B.real;temp.real=A.real + B.real;
temp.imag= A.imag + B.imag;temp.imag= A.imag + B.imag;
return temp;return temp;
}}
void main ()void main ()
{{
Complex X, Y, Z;Complex X, Y, Z;
X.Getdata();X.Getdata();
Y. getdata();Y. getdata();
Z= sum (X,Y);Z= sum (X,Y);
Z.putdata();Z.putdata();
}}

5
6

7
8

X Y Z

7
8

B

5
6

A

+
+

=

=

temp

Friend FunctionFriend Function
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
friend Complex sum (Complex A, Complex B);friend Complex sum (Complex A, Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

Complex sum (Complex A, Complex B)Complex sum (Complex A, Complex B)
{{
Complex temp;Complex temp;
temp.real=A.real + B.real;temp.real=A.real + B.real;
temp.imag= A.imag + B.imag;temp.imag= A.imag + B.imag;
return temp;return temp;
}}
void main ()void main ()
{{
Complex X, Y, Z;Complex X, Y, Z;
X.Getdata();X.Getdata();
Y. getdata();Y. getdata();
Z= sum (X,Y);Z= sum (X,Y);
Z.putdata();Z.putdata();
}}

5
6

7
8

X Y Z

7
8

B

5
6

A

12
14

+
+

=

=

temp

Friend FunctionFriend Function
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
friend Complex sum (Complex A, Complex B);friend Complex sum (Complex A, Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

Complex sum (Complex A, Complex B)Complex sum (Complex A, Complex B)
{{
Complex temp;Complex temp;
temp.real=A.real + B.real;temp.real=A.real + B.real;
temp.imag= A.imag + B.imag;temp.imag= A.imag + B.imag;
return temp;return temp;
}}
void main ()void main ()
{{
Complex X, Y, Z;Complex X, Y, Z;
X.Getdata();X.Getdata();
Y. getdata();Y. getdata();
Z= sum (X,Y);Z= sum (X,Y);
Z.putdata();Z.putdata();
}}

5
6

7
8

12
14

X Y Z

7
8

B

5
6

A

12
14

+
+

=

=

temp

Friend FunctionFriend Function
#include<iostream.h>#include<iostream.h>
class Complexclass Complex
{{
float real, imag;float real, imag;
public:public:
void getdata();void getdata();
void putdata();void putdata();
friend Complex sum (Complex A, Complex B);friend Complex sum (Complex A, Complex B);
};};
void Complex : : getdata()void Complex : : getdata()
{{
cout<<“enter real part:”;cout<<“enter real part:”;
cin>>real;cin>>real;
cout<<“enter imaginary part:”;cout<<“enter imaginary part:”;
cin>>imag;cin>>imag;
}}
void Complex : : putdata()void Complex : : putdata()
{{
if (imag>=0)if (imag>=0)
cout<<real<<“+”<<imag<<“i”;cout<<real<<“+”<<imag<<“i”;
elseelse
cout<<real<<imag<<“i”;cout<<real<<imag<<“i”;
}}

Complex sum (Complex A, Complex B)Complex sum (Complex A, Complex B)
{{
Complex temp;Complex temp;
temp.real=A.real + B.real;temp.real=A.real + B.real;
temp.imag= A.imag + B.imag;temp.imag= A.imag + B.imag;
return temp;return temp;
}}
void main ()void main ()
{{
Complex X, Y, Z;Complex X, Y, Z;
X.Getdata();X.Getdata();
Y. getdata();Y. getdata();
Z= sum (X,Y);Z= sum (X,Y);
Z.putdata();Z.putdata();
}}

12 + 14 i12 + 14 i

5
6

7
8

12
14

X Y Z

7
8

B

5
6

A

12
14

+
+

=

=

temp

 We can also declare all the member functions of one We can also declare all the member functions of one
class as the friend functions of another class. In this class as the friend functions of another class. In this
case the first class is known as FRIEND class.case the first class is known as FRIEND class.

 This can be specified as follows :-This can be specified as follows :-
Class zClass z

{{

……………………....

…………

Friend class x;Friend class x;

};};

A function friend in two classesA function friend in two classes
Void max(XYZ m,ABC n)Void max(XYZ m,ABC n)

{{
If(m.x>=n.a)If(m.x>=n.a)

Cout<<m.x;Cout<<m.x;

ElseElse

Cout<<n.a;Cout<<n.a;

}}

Int main ()Int main ()

{{

ABC abc;ABC abc;

abc..setvalue(10);abc..setvalue(10);

XYZ xyz;XYZ xyz;

Xyz.setvalue(20);Xyz.setvalue(20);

max(xyz,abc);max(xyz,abc);

Return 0;Return 0;

}}

#include<iostream.h>#include<iostream.h>

Class ABC;Class ABC;

Class XYZClass XYZ

{ int x;{ int x;
Public:Public:

Void setvalue(int i)Void setvalue(int i)

{ x=i ; }{ x=i ; }

Friend void max(XYZ,ABC);Friend void max(XYZ,ABC);

};};

Class ABC Class ABC

{{ int a;int a;

Public:Public:

void setvalue(int i)void setvalue(int i)

{{ a=i ;}a=i ;}

Friend void max(XYZ,ABC);Friend void max(XYZ,ABC);

};};

Pass by referencePass by reference

#include<iostream.h>#include<iostream.h>

Class class_2;Class class_2;

Class class_1Class class_1

{{ int value1;int value1;

Public:Public:

void indata(int a)void indata(int a)

{{ value1=a;value1=a; }}

Void display()Void display()

{{ cout<<value1<<“\n”;cout<<value1<<“\n”; }}

Friend void exchange(class_1 &, Friend void exchange(class_1 &,
class_2 &);class_2 &);

};};

Class class_2Class class_2

{ { int value2;int value2;

public:public:

void indata(int a)void indata(int a)

{{ value2=a;value2=a; }}

Void display()Void display()

{{ cout<<value2<<“\n”;cout<<value2<<“\n”; }}

Friend void exchange(class_1 Friend void exchange(class_1
&,class_2 &);&,class_2 &);

};};

Contd…

Void exchange(class_1 & x,class_2 Void exchange(class_1 & x,class_2
& y)& y)

{{ int temp=x.value1;int temp=x.value1;

x.value1=y.value2;x.value1=y.value2;

y.value2=temp;y.value2=temp;

}}

Int main()Int main()

{{

class_1 c1;class_1 c1;

Class_2 c2;Class_2 c2;

C1.indata(100);C1.indata(100);

C2.indata(200);C2.indata(200);

Cout<<“values before Cout<<“values before
exchange”<<“\n”;exchange”<<“\n”;

C1.dispaly();C1.dispaly();

C2.display();C2.display();

Exchange(c1,c2);Exchange(c1,c2);

Cout<<“values after Cout<<“values after
exchange”<<“\n”;exchange”<<“\n”;

C1.display();C1.display();

C2.display();C2.display();

Return 0;Return 0;

}}

Define a class tour in C++ with the Define a class tour in C++ with the
description given below:description given below:

Private members:Private members:
tcodetcode of type stringof type string
NoofadultsNoofadults of type integerof type integer
NoofkidsNoofkids of type integerof type integer
KilometersKilometers of type integerof type integer
TotalfareTotalfare of type floatof type float
Public members:Public members:
 A constructor to assign initial values as follows:A constructor to assign initial values as follows:

Tcode with the word “NULL”Tcode with the word “NULL”
Noofadults as 0Noofadults as 0
Noofkids as 0Noofkids as 0
Kilometers as 0Kilometers as 0
Totalfare as 0Totalfare as 0

 A function assignfare() which calculates and assigns the value of data member totalfare as follows:A function assignfare() which calculates and assigns the value of data member totalfare as follows:
for each adultfor each adult
Fare (Rs.)Fare (Rs.) For KilometersFor Kilometers
500500 >=1000>=1000
300300 < 1000 & >= 500< 1000 & >= 500
200200 < 500< 500
for each kid the above fare will be 50% of the fare mentioned in the above table for example:for each kid the above fare will be 50% of the fare mentioned in the above table for example:
if kilometers is 850, noofadults =2 and noofkids = 3if kilometers is 850, noofadults =2 and noofkids = 3
then totalfare should be calculated as then totalfare should be calculated as

noofadults * 300 + noofkids * 150noofadults * 300 + noofkids * 150
I.e. 2 * 300 + 3 * 150 = 1050I.e. 2 * 300 + 3 * 150 = 1050

 A function entertour() to imput the values of the data members tcode, noofadults, noofkids and A function entertour() to imput the values of the data members tcode, noofadults, noofkids and
kilometers and invoke assignfare() function.kilometers and invoke assignfare() function.

 A function showtour () which displays the contents of all the data members for a tour.`````A function showtour () which displays the contents of all the data members for a tour.`````

class tourclass tour
{{
char tcode[15];char tcode[15];
int noofadults;int noofadults;
int noofkids;int noofkids;
int kilometers;int kilometers;
float totalfare;float totalfare;
public:public:
tour()tour()
{{
strcpy(tcode,”null”);strcpy(tcode,”null”);
noofadults=0;noofadults=0;
noofkids=0;noofkids=0;
kilometers=0;kilometers=0;
totalfare=0;totalfare=0;
}}
void assignfare()void assignfare()
{{
if (kilometers>=1000)if (kilometers>=1000)
totalfare= 500 * noofadults + 250 * totalfare= 500 * noofadults + 250 *

noofkids;noofkids;
else if (kilometers>=500)else if (kilometers>=500)
totalfare= 300 * noofadults + 150 * totalfare= 300 * noofadults + 150 *

noofkids;noofkids;
elseelse
totalfare= 200 * noofadults + 100 * totalfare= 200 * noofadults + 100 *

noofkids;noofkids;
}}

void entertour()void entertour()
{{
cout<<“enter tcode:”;cout<<“enter tcode:”;
gets(tcode);gets(tcode);
cout<<“enter noofadults:”;cout<<“enter noofadults:”;
cin>>noofadults;cin>>noofadults;
cout<<“enter noofkids:”;cout<<“enter noofkids:”;
cin>>noofkids;cin>>noofkids;
cout<<“enter kilometers=“;cout<<“enter kilometers=“;
cin>>kilometers;cin>>kilometers;
}}
void showtour ()void showtour ()
{{
cout<<“tcode=“<<tcode;cout<<“tcode=“<<tcode;
cout<<“\nnumber of cout<<“\nnumber of

adults=“<<noofadults;adults=“<<noofadults;
cout<<“\nnumber of kids=“<<noofkids;cout<<“\nnumber of kids=“<<noofkids;
cout<<“\nkilometers=“<<kilometers;cout<<“\nkilometers=“<<kilometers;
cout<<“\ntotalfare=“<<totalfare;cout<<“\ntotalfare=“<<totalfare;
}}
};};

Define a class HOUSING in C++ Define a class HOUSING in C++
with the following descriptions:with the following descriptions:

(4)(4)
 private members:private members:
 REG_NOREG_NO integer (ranges 10-1000)integer (ranges 10-1000)
 NAMENAME array of characters (string)array of characters (string)
 TYPETYPE charactercharacter
 COSTCOST floatfloat
 Public members:Public members:

 function read_data() to read an object of HOUSING type.function read_data() to read an object of HOUSING type.
 Function display () to display the details of an object.Function display () to display the details of an object.
 Function draw_nos() to choose and display the details of 2 Function draw_nos() to choose and display the details of 2

houses selected randomly from an array of 10 objects of type houses selected randomly from an array of 10 objects of type
HOUSING. Use random function to generate the registration HOUSING. Use random function to generate the registration
nos. to match with REG_NO from the array.nos. to match with REG_NO from the array.

class HOUSINGclass HOUSING
{{
int REG_NO;int REG_NO;
char NAME[20], TYPE;char NAME[20], TYPE;
float COST;float COST;
public:public:
void read_data()void read_data()
{ {
cout<<“Enter Registration Number=“;cout<<“Enter Registration Number=“;
cin>>REG_NO;cin>>REG_NO;
cout<<“Enter Name=“;cout<<“Enter Name=“;
gets(NAME);gets(NAME);
cout<<“Enter Type=“;cout<<“Enter Type=“;
cin>> TYPE;cin>> TYPE;
cout<<“Enter Cost=“;cout<<“Enter Cost=“;
cin>>COST;cin>>COST;
}}

void display ()void display ()
{{
cout<<“Registration No.”<<REG_NO;cout<<“Registration No.”<<REG_NO;
cout<<“\nName=“;cout<<“\nName=“;
puts(NAME);puts(NAME);
cout<<“\nType=“<<TYPE;cout<<“\nType=“<<TYPE;
cout<<“\nCost=“<<COST;cout<<“\nCost=“<<COST;
}}
void draw_nos()void draw_nos()
{{
int no1, no2;int no1, no2;
randomize();randomize();
no1=random(1991)+10;no1=random(1991)+10;
no2=random(1991)+10;no2=random(1991)+10;
for (int i=0; i<10; i++)for (int i=0; i<10; i++)
if (arr[i].REG_NO==no1|| arr[i].REG_NO==no2)if (arr[i].REG_NO==no1|| arr[i].REG_NO==no2)
display();display();
}}
};};
HOUSING arr[10];HOUSING arr[10];

functionfunction

functionfunction

 Void show();Void show(); function declarationfunction declaration
 Main()Main()
 {{

 Show();Show(); function callfunction call

}}

Void show()Void show() function definitionfunction definition

{{

……………………

……………… function bodyfunction body

}}

Function prototypeFunction prototype

 Introduce first in c++.Introduce first in c++.

 Prototype describe the function interface ti the compiler Prototype describe the function interface ti the compiler
by giving details (number and type of arguments and by giving details (number and type of arguments and
return type)..return type)..

 Type function name (arguments list). ;Type function name (arguments list). ;
 Ex:-Ex:-
 float add(int k,int g);float add(int k,int g);
 float add(int k,g); illegalfloat add(int k,g); illegal
 float add (int ,int){name of the arguments float add (int ,int){name of the arguments

are optional}are optional}

 In function definition arguments names are required In function definition arguments names are required
because the arguments must be refereced inside the because the arguments must be refereced inside the
function ex:-function ex:-

 Float volume(int a,float b,float c);Float volume(int a,float b,float c);
 {{

 Float v=a * b * c;Float v=a * b * c;

 }}

 The function calling should not include type names in the The function calling should not include type names in the
argument list.argument list.

Call by referenceCall by reference

 When we pass arguments by reference then the argument When we pass arguments by reference then the argument
in the called function become alias to the actual arguments in the called function become alias to the actual arguments
in the calling function .in the calling function .

 When function is working its own arguments, its works When function is working its own arguments, its works
on the original arguments.on the original arguments.

 In c++ this task is perform by making reference variable In c++ this task is perform by making reference variable
to the actual arguments.to the actual arguments.

Call by value.Call by value.

 When a function call passes arguments by value, the When a function call passes arguments by value, the
called function creates a new set of variable and copies called function creates a new set of variable and copies
the values of arguments into them, this process is known the values of arguments into them, this process is known
as call by value.as call by value.

 Function does not have access to the actual variables in Function does not have access to the actual variables in
the calling program and can work on the copies of values.the calling program and can work on the copies of values.

Inline functionInline function

 Inline is a function that expanded in a line when it is invoked.Inline is a function that expanded in a line when it is invoked.
 The compiler replaces the function call by its corresponding The compiler replaces the function call by its corresponding

code.code.
 Syntax:Syntax:

 Inline return type function name Inline return type function name
 {{

 Function bodyFunction body

 }}

 Improve the execution speed.Improve the execution speed.

 Reduces the memory requirement of function execution.Reduces the memory requirement of function execution.

 All inline function must be defined before they called.All inline function must be defined before they called.

 The speed benefits of inline function diminish as the The speed benefits of inline function diminish as the
function grows in size.function grows in size.

 A function definition in a class definition is an inline A function definition in a class definition is an inline
function definition, even without the use of the function definition, even without the use of the inline inline
specifier.specifier.

 Where inline may not workWhere inline may not work
 For functions returning values , if a loop, switch, goto For functions returning values , if a loop, switch, goto

statements.statements.

 Functions not returning values, if return exists.Functions not returning values, if return exists.

 If function contain static variables.If function contain static variables.

 If inline functions are recursiveIf inline functions are recursive

 When function call becomes small compare to function When function call becomes small compare to function
execution.execution.

 #include<iostream.h>#include<iostream.h>
 Inline float add(float x , float y)Inline float add(float x , float y)
 {{
 Return (x+y);Return (x+y);
 }}
 Inline float sub(float p , float q)Inline float sub(float p , float q)
 {{

Return(p-q);Return(p-q);

}}

Int main()Int main()

{{

Float a=12.34;Float a=12.34;

Float b=3.6Float b=3.6

Cout<<add(a,b)<<endl;Cout<<add(a,b)<<endl;

 cout<<sub(a,b)<<endl;cout<<sub(a,b)<<endl;

Return 0;Return 0;

}}

Default argumentsDefault arguments

 A default argument is a value given in the function A default argument is a value given in the function
declaration that the compiler automatically inserts if the declaration that the compiler automatically inserts if the
caller does not provide a value for that argument in the caller does not provide a value for that argument in the
function call. function call.

 Syntax:Syntax:

return_type f(…, type x = default_value,…);

Default argumentsDefault arguments

 Default values are specified when the function is declared.Default values are specified when the function is declared.

 We must add default values from right to left ,we can not We must add default values from right to left ,we can not
provide a default value to a particular arguments in the provide a default value to a particular arguments in the
middle of argument list.middle of argument list.

 Default arguments are useful in situations where some Default arguments are useful in situations where some
arguments always have the same value.arguments always have the same value.

Default Arguments Default Arguments
(Examples)(Examples)

 doubledouble powpow((doubledouble x, x, intint n=2) n=2)
 // computes and returns x// computes and returns xnn

The default value of the 2nd argument is 2.
This means that if the programmer calls pow(x), the

compiler will replace that call with pow(x,2), returning
x2

Default Arguments Default Arguments
(Rules)(Rules)

 Once an argument has a default value, all the arguments Once an argument has a default value, all the arguments
after it must have default values. after it must have default values.

 Once an argument is defaulted in a function call, all the Once an argument is defaulted in a function call, all the
remaining arguments must be defaulted.remaining arguments must be defaulted.

int f(int x, int y=0, int n)
// illegal int f(int x, int y=0, int n=1)

// legal

Examples:-Examples:-

 Int mul(int I,int j=6,int l=9); legalInt mul(int I,int j=6,int l=9); legal
 Int mul(int I,int j=6,int l); illegalInt mul(int I,int j=6,int l); illegal
 Int mul(int I=0,int j,int l=9); illegalInt mul(int I=0,int j,int l=9); illegal
 Int mul(int I=0,int j=6,int l=9); legalInt mul(int I=0,int j=6,int l=9); legal

 Advantages:-Advantages:-
 We can default arguments to add new parameters to the We can default arguments to add new parameters to the

existing functions.existing functions.
 Default arguments can be used to combine similar Default arguments can be used to combine similar

functions into one.functions into one.

Function overloadingFunction overloading

 When using more than one functions with same name and When using more than one functions with same name and
with different arguments in a program is known as with different arguments in a program is known as
function overloading or function polymorphism.function overloading or function polymorphism.

 Function overloading is part of polymorphism.Function overloading is part of polymorphism.

Function overloadingFunction overloading

 Function would perform different operations depending Function would perform different operations depending
on the argument list in function call.on the argument list in function call.

 Correct function to be invoked is determined by checking Correct function to be invoked is determined by checking
the number and type of arguments but not on return type the number and type of arguments but not on return type
of function.of function.

 Examples;-Examples;-
 Int area(int,int);Int area(int,int);
 Int area(int ,float);Int area(int ,float);

Function overloadingFunction overloading

 Examples :-Examples :-
 Int add(int a, int b);Int add(int a, int b);
 Int add(int a, int b, int c);Int add(int a, int b, int c);
 Double add(double x, double y);Double add(double x, double y);
 Double add(int p ,double q);Double add(int p ,double q);
 Double add(double p, int q);Double add(double p, int q);

 Function callsFunction calls
 Add(5,19);Add(5,19);
 Add(16,7.9);Add(16,7.9); Add(12.4,3.5); Add(12.4,3.5);
 Add (4,12,23);Add (4,12,23); Add(3.4,7) Add(3.4,7)

Function prototype 1

Function prototype 2

Function prototype 3

Function prototype4

Function prototype 5

Function overloadingFunction overloading

 A function call first match the prototype having the same A function call first match the prototype having the same
number and type of actual arguments and then calls the number and type of actual arguments and then calls the
appropriate function for execution…appropriate function for execution…

Function overloadingFunction overloading

 A function match includes following steps:-A function match includes following steps:-

1.1. Compiler first try to find exact match in which the types Compiler first try to find exact match in which the types
of actual arguments are the same.of actual arguments are the same.

2.2. If exact match not found, compiler uses the integral If exact match not found, compiler uses the integral
promotions to the actual arguments like char to int, float promotions to the actual arguments like char to int, float
to double.to double.

Function overloadingFunction overloading

3.3. When either of them fail then compiler uses built in When either of them fail then compiler uses built in
conversion to the actual arguments and then uses the conversion to the actual arguments and then uses the
function whose match is unique.function whose match is unique.

4.4. If all of the steps fail then the compiler will try user If all of the steps fail then the compiler will try user
defined conversions in combination with integral defined conversions in combination with integral
promotions and built in conversions to find a unique promotions and built in conversions to find a unique
match.match.

ConstructorsConstructors

and and

DestructorsDestructors

ConstructorConstructor
 It is a member function which initializes the It is a member function which initializes the

objects of its class.objects of its class.

 A constructor has:A constructor has:

(i) the same name as the class itself(i) the same name as the class itself

(ii) no return type(ii) no return type ,not even void. ,not even void.

 It constructs the values of data member so It constructs the values of data member so
that it is called constructor.that it is called constructor.

 A constructor is A constructor is called automaticallycalled automatically
whenever a new object of a class is whenever a new object of a class is
created.created.

 You must You must supply the argumentssupply the arguments to the to the
constructor when a new object is created.constructor when a new object is created.

 If you do not specify a constructor, the If you do not specify a constructor, the
compiler generates a default constructor compiler generates a default constructor
for you (expects no parameters and has for you (expects no parameters and has
an empty body).an empty body).

void main()void main()
{{
 rectangle rc(3.0, 2.0);rectangle rc(3.0, 2.0);

 rc.posn(100, 100);rc.posn(100, 100);
 rc.draw();rc.draw();
 rc.move(50, 50);rc.move(50, 50);
 rc.draw();rc.draw();
}}

 WarningWarning: attempting to initialize a data : attempting to initialize a data
member of a class explicitly in the class member of a class explicitly in the class
definition is a syntax error.definition is a syntax error.

Declaration and defination Declaration and defination

Class complexClass complex

{{
Int m,n;Int m,n;

Public:Public:
complex();complex();

};};

complex :: complex ()complex :: complex ()

{{

m=0;n=0;m=0;n=0;

}}

 A constructor that accepts no parameters is A constructor that accepts no parameters is
called default constructor.called default constructor.

characteristicscharacteristics

1.1. They should be declared in public section.They should be declared in public section.

2.2. Invoked automatically when class objects are Invoked automatically when class objects are
created.created.

3.3. They do not have return types, not even void They do not have return types, not even void
and they can't return any value.and they can't return any value.

4.4. They cannot be inherited,though a derived They cannot be inherited,though a derived
class can call the base class constructors.class can call the base class constructors.

5. They also default arguments like other 5. They also default arguments like other
functions.functions.

6. They implicitly call the NEW and DELETE 6. They implicitly call the NEW and DELETE
operators when memory allocation is required.operators when memory allocation is required.

7. Constructors can not be virtual.7. Constructors can not be virtual.

Parameterized constructorsParameterized constructors
 The constructors that can take arguments are The constructors that can take arguments are

called parameterized constructors.called parameterized constructors.

 It is used when we assign different value to It is used when we assign different value to
the data member for different object.the data member for different object.

 We must pass the initial values as arguments We must pass the initial values as arguments
to the constructors when an object is to the constructors when an object is
declared.declared.

 This can be done in two ways:-This can be done in two ways:-
 By By calling the constructors implicitlycalling the constructors implicitly

 Class_name object(arguments);Class_name object(arguments);
 Ex:- simple s(3,67);Ex:- simple s(3,67);
 This method also known as shorthand.This method also known as shorthand.

 By By calling the constructors explicitlycalling the constructors explicitly
 Class_name object =constructor(arguments);Class_name object =constructor(arguments);
 Ex:- simple s=simple(2,67);Ex:- simple s=simple(2,67);
 This statement create object s and passes the values 2 This statement create object s and passes the values 2

and 67 to it.and 67 to it.

Example:-Example:-
#include<iostream.h>#include<iostream.h>
Class integerClass integer
{{ int m,n;int m,n;

public:public:
integer(int,int);integer(int,int);
void display()void display()

{{ cout<<“m”<<m;cout<<“m”<<m;
cout<<“n”<<n;cout<<“n”<<n; }}

};};
Integer::integer(int x,int y)Integer::integer(int x,int y)
{{

m=x;m=x;
n=y;n=y;

}}

Int main()Int main()
{{
Integer i1(10,100);Integer i1(10,100);
Integer i2=integer(33,55);Integer i2=integer(33,55);
Cout<<“object 1”;Cout<<“object 1”;
i1.display();i1.display();
Cout<<“object 2”;Cout<<“object 2”;
i2.display();i2.display();
Return 0;Return 0;
}}

Notes:-Notes:-

 A constructor function can A constructor function can
also be defined as INLINE also be defined as INLINE
function.function.

Class integerClass integer
{{ int m,n;int m,n;

public:public:
integer (int x,int y)integer (int x,int y)

{{ m=x;m=x;
n=y;n=y;

}};}};

 Parameters of a Parameters of a
constructor can be of any constructor can be of any
type except that of the type except that of the
class to which it belongs.class to which it belongs.

Class AClass A
{{
………………..
…………..
Public:Public:
A(A);A(A);
}; }; is illegalis illegal

 A class can accept a A class can accept a
reference of its own class reference of its own class
as parameter.as parameter.

Class AClass A
{{

………………
…………………………
Public:Public:
A(A&);A(A&);
};};

is validis valid

 In this case the In this case the
constructor is called as constructor is called as
copy constructor.copy constructor.

Copy constructorCopy constructor

 When a class reference is passed as parameters When a class reference is passed as parameters
in constructor then that constructor is called in constructor then that constructor is called
copy constructor.copy constructor.

 A copy constructor is used to declare and A copy constructor is used to declare and
initialize an object from another object.initialize an object from another object.

 Synatx:-Synatx:-
 Constructor _name (class_name & object);Constructor _name (class_name & object);
 Integer (integer &i);Integer (integer &i);

 Integer i2(i1);/integer i2=i1;Integer i2(i1);/integer i2=i1;
 Define object i2 and initialize it with i1.Define object i2 and initialize it with i1.
 The process of initialization object through copy The process of initialization object through copy

constructor is known as copy initialization.constructor is known as copy initialization.

 A copy constructor takes a reference to an object A copy constructor takes a reference to an object
of the same class as itself as argument.of the same class as itself as argument.

 #include<iostream.h>#include<iostream.h>
Class personClass person
{{ public: public:

int age;int age;
 Person(int a)Person(int a)

 { age = a; } { age = a; }
Person(person & x)Person(person & x)
{{ age=x.age;age=x.age;
}}
}; };

int main() int main()
{ {

Person timmy(10); Person timmy(10);
Person sally(15); Person sally(15);
Person timmy_clone = timmy; Person timmy_clone = timmy;
cout << timmy.age << " " << cout << timmy.age << " " <<

sally.age << " " << sally.age << " " <<
timmy_clone.age << endl; timmy_clone.age << endl;
timmy.age = 23; timmy.age = 23;

cout << timmy.age << " " << cout << timmy.age << " " <<
sally.age << " " << sally.age << " " <<
timmy_clone.age << endl; timmy_clone.age << endl;

}}

Dynamic constructorsDynamic constructors
 Constructors can also be used to allocate Constructors can also be used to allocate

memory while creating objects.memory while creating objects.
 This will allocate the right amount for each This will allocate the right amount for each

object when the objects are not of the same object when the objects are not of the same
size.size.

 Allocation of memory to objects at the time of Allocation of memory to objects at the time of
their construction is known as dynamic their construction is known as dynamic
construction is known as “dynamic construction is known as “dynamic
construction of objects”.construction of objects”.

 The memory is allocated by NEW operator.The memory is allocated by NEW operator.

#include<iostream.h>#include<iostream.h>

#include<string.h>#include<string.h>

Class stringClass string

{{

char *name;char *name;

int length;int length;

Public:Public:

string()string()

{{

length =0;length =0;

name = newchar[length+1];name = newchar[length+1];

}}

string(char *s)string(char *s)

{{

length=strlen(s);length=strlen(s);

name=new char [length+1];name=new char [length+1];

strcpy(name,s);strcpy(name,s);

}}

Void display()Void display()

{{ cout<<name<<“\n”;}cout<<name<<“\n”;}

void join (string &a,string & b);void join (string &a,string & b);

};};

void string:: join(striing&a,string &b)void string:: join(striing&a,string &b)

{{ length =a.length+b.length;length =a.length+b.length;

delete name;delete name;

name =new char [length+1];name =new char [length+1];

strcpy(name,a.name);strcpy(name,a.name);

strcpy(name,b.name);strcpy(name,b.name);

}}

Int main()Int main()

{{ char *first =“jon”;char *first =“jon”;

string name1(first),name2(tom),name3(jery),s1,s2;string name1(first),name2(tom),name3(jery),s1,s2;

s1.join(name1.name2);s1.join(name1.name2);

s2.join(s1,name3);s2.join(s1,name3);

name1.display();name1.display();

name2.display();name2.display();

name3.display();name3.display();

s1.display();s1.display();

s2.display();s2.display();

return 0;return 0;

}}

Constructor overloadingConstructor overloading
{multiple constructor in a class}{multiple constructor in a class}

 When more than one function is defined in a class , When more than one function is defined in a class ,
is known as constructor overloading.is known as constructor overloading.

 Example:-Example:-
Class integer Class integer

{{ int m,n;int m,n;

public:public:

integer()integer()

{{ m=0;m=0; n=0;n=0; }}

Integer (int a,int b)Integer (int a,int b)

{{ m=a;n=bm=a;n=b }}

Integer(integer&i)Integer(integer&i)

{{ m=i.m;m=i.m;

n=i.n;n=i.n; }};}};

#include<iostream.h>#include<iostream.h>

Class complexClass complex

{{ float real,imag;float real,imag;

public:public:

complex(){ }complex(){ }

complex(float x)complex(float x)

{{ real=imag=x;}real=imag=x;}

complex(float c, float d)complex(float c, float d)

{{ real=c;real=c; imag = imag =
d;d; }}

friend complex sum friend complex sum
(complex,complex);(complex,complex);

friend display(complex);friend display(complex);

};};

Complex sum (complex c1, complex c2)Complex sum (complex c1, complex c2)

{{ complex c3;complex c3;

c3.real =c1.real +c2.real;c3.real =c1.real +c2.real;

c3.imag=c1.imag+c2.imag;c3.imag=c1.imag+c2.imag;

Return(c3);Return(c3);

}}

Void display(complex d)Void display(complex d)

{{ cout<<c.real<<“+j”<<c.imag;cout<<c.real<<“+j”<<c.imag;

}}

Int main()Int main()

{{

complex a(3.4,6.7);complex a(3.4,6.7);

complexb(2.5);complexb(2.5);

complex c;complex c;

c= sum(a,b);c= sum(a,b);

cou<<“a=”;display(a);cou<<“a=”;display(a);

cout<<“b=”;display(b);cout<<“b=”;display(b);

cout<<“c=”;display(c);cout<<“c=”;display(c);

}}

 Constructors are also define with default Constructors are also define with default
arguments arguments

 Complex (float real ,float imag=0);Complex (float real ,float imag=0);

 It will invoke by following way complex c(5), It will invoke by following way complex c(5),
this statement assign 5 to real and the default this statement assign 5 to real and the default
value already assigned to imag.value already assigned to imag.

 We can also invoke it like complex(5,3.4),it will We can also invoke it like complex(5,3.4),it will
assign values both real and imag means assign values both real and imag means
overwrite the new value to imag value.overwrite the new value to imag value.

Dynamic initialization of objectsDynamic initialization of objects

 Objects can be initialized dynamically,initial Objects can be initialized dynamically,initial
value of objects are provided during run value of objects are provided during run
time.time.

 Advantage of it we can provide various Advantage of it we can provide various
initialization formats by constructor initialization formats by constructor
overloading.overloading.

#include<iostream.h>#include<iostream.h>

Class fixed_depositClass fixed_deposit

{{

long int pamount;long int pamount;

int y;int y;

float r;float r;

float rvalue;float rvalue;

Public:Public:

fixed_deposit() { }fixed_deposit() { }

fixed_deposit(long int p,int y1,float r1=0.2);fixed_deposit(long int p,int y1,float r1=0.2);

fixed_deposit(long int p,int y1, int r1);fixed_deposit(long int p,int y1, int r1);

void display();void display();

};};

Fixed_deposit :: fixed_deposit(long int p,int y1, Fixed_deposit :: fixed_deposit(long int p,int y1,
float r1)float r1)

{{ pamount =p;pamount =p;

y=y1;y=y1;

r=r1;r=r1;

rvalue=(pamount*y*r)rvalue=(pamount*y*r) ;;

Rvalue=rvalue/100;Rvalue=rvalue/100;

}}

Fixed_deposit :: fixed_deposit(long int p, int Fixed_deposit :: fixed_deposit(long int p, int
y1,int r1)y1,int r1)

{{ pamount=p;pamount=p;

y=y1;y=y1;

r=r1;r=r1;

rvalue=pamount;rvalue=pamount;

for(int i=1;i<=y1;i++)for(int i=1;i<=y1;i++)

rvalue =rvalue*(1+float(r)/100);}rvalue =rvalue*(1+float(r)/100);}

Void fixed_deposit :: display()Void fixed_deposit :: display()

{{

cout<<“\n”cout<<“\n”

<< “pricipal amount”<<pamount<<“\n”<< “pricipal amount”<<pamount<<“\n”

<<“return value”<<rvalue<<“\n”;<<“return value”<<rvalue<<“\n”;

}}

Int main()Int main()

{{

fixed_deposit fd1,fd2,fd3;fixed_deposit fd1,fd2,fd3;

long int p;int y1; float r; int R;long int p;int y1; float r; int R;

Cout<<“enter amount,period,intrest rate in Cout<<“enter amount,period,intrest rate in
percent”<<“\n”;percent”<<“\n”;

Cin>>p>>y>>R;Cin>>p>>y>>R;

Fd1=fixed_deposit(p,y,R);Fd1=fixed_deposit(p,y,R);

Cout<<“enter amount,period,intrest rate in Cout<<“enter amount,period,intrest rate in
decimal ”<<“\n”;decimal ”<<“\n”;

Cin>>p>>y>>r;Cin>>p>>y>>r;

Fd2=fixed_deposit(p,y,r);Fd2=fixed_deposit(p,y,r);

Cout<<“enter amount and peroid”<<“\n”;Cout<<“enter amount and peroid”<<“\n”;

Cin>>p>>y;Cin>>p>>y;

Fd3=fixed_deposit(p,y);Fd3=fixed_deposit(p,y);

Cout<<“\ndeposit 1”;Cout<<“\ndeposit 1”;

Fd1.display();Fd1.display();

Cout<<“\n deposit 2”;Cout<<“\n deposit 2”;

Fd2.display();Fd2.display();

Cout<<“\n deposit 3”;Cout<<“\n deposit 3”;

Fd3.display();Fd3.display();

Return 0;Return 0;

}}

Destructors Destructors

 A destructor is used to destroy the objects that A destructor is used to destroy the objects that
have been created by constructor.have been created by constructor.

 It is also a member function of class whose It is also a member function of class whose
name same as class name but preceded by tiled name same as class name but preceded by tiled
sign(~).sign(~).

 It never takes any arguments nor return any It never takes any arguments nor return any
value.value.

 It will be invoked implicitly by the compiler It will be invoked implicitly by the compiler
upon exit from the program to clean up the upon exit from the program to clean up the
storage which is allocated storage which is allocated

 The new operator is used in constructor to The new operator is used in constructor to
allocate memory and delete is used to free in allocate memory and delete is used to free in
destructors.destructors.

 Expl:-Expl:- ~assign()~assign()
 {{

 Delete p;Delete p;

}}

#include<iostream.h>#include<iostream.h>

Int count =0;Int count =0;

Class tryClass try

{{ public:public:

try()try()

{{

count++;count++;

Cout<<“no of objects created”<<count;Cout<<“no of objects created”<<count;

}}

~try()~try()

{{

cout<<“no of object destroyed”<<count;cout<<“no of object destroyed”<<count;

Count- -;Count- -;

}};}};

int main()int main()

{{

cout<< “enter main”;cout<< “enter main”;

try t1,t2,t3,t4;try t1,t2,t3,t4;

{{

cout<<“block1”;cout<<“block1”;

try t5;try t5;

}}

{{

cout<<“block 2”;cout<<“block 2”;

try t6;try t6;

}}

cout<<“again in main”;cout<<“again in main”;

Return 0;Return 0;

}}

Basic Concept of OOPBasic Concept of OOP

Ø
·

IntroductionIntroduction

Object oriented programming is the principle of
design and development of programs using
modular approach.
◦ Object oriented programming approach provides

advantages in creation and development of software for
real life application.

◦ The basic element of object oriented programming is the
data.

◦ The programs are built by combining data and functions
that operate on the data.

◦ Some of the OOP’s languages are C++, Java, C #,
Smalltalk, Perl, and Python.

Prof. K. Adisesha 2

Procedural programmingProcedural programming
The procedural programming focuses on

processing of instructions in order to perform a
desired computation.

The top-down concepts to decompose main
functions into lower level components for modular

coding purpose.
Therefore it emphasizes more on doing things like

algorithms.
This technique is used in a conventional

programming language such as C and Pascal.

Prof. K. Adisesha 3

Object oriented Object oriented
programmingprogramming

Object oriented programming (OOP) is a concept
that combines both the data and the functions that
operate on that data into a single unit called the
object.

An object is a collection of set of data known as
member data and the functions that operate on these
data known as member function.

OOP follows bottom-up design technique.
Class is the major concept that plays important role

in this approach. Class is a template that represents a
group of objects which share common properties
and relationships.

Prof. K. Adisesha 4

Dr.R.Priyadarshini
Highlight

Dr.R.Priyadarshini
Highlight

Dr.R.Priyadarshini
Highlight

Dr.R.Priyadarshini
Highlight

DifferencesDifferences
Procedural Programming Object Oriented Programming

Large programs are divided into
smaller programs known as
functions

Programs are divided into
objects

Data is not hidden and can be
accessed by external functions

Data is hidden and cannot be
accessed by external functions

Follow top down approach in the
program design

Follows bottom-up approach in
the program design

Data may communicate with
each other through functions

Objects may communicate with
each other through functions.

Emphasize is on procedure rather
than data

Emphasize is on data rather than
procedure

Prof. K. Adisesha 5

Basic Concepts of OOP’sBasic Concepts of OOP’s

Prof. K. Adisesha 6

The following are the major characteristics of OOP’s:

ObjectsObjects
Objects are basic building blocks for designing

programs.
An object is a collection of data members and

associated member functions.
An object may represent a person, place or a table

of data.
Each object is identified by

a unique name. Each object must

be a member of a particular class.
Example: Apple, orange, mango

are the objects of class fruit.
Prof. K. Adisesha 7

ClassesClasses
The objects can be made user defined data types

with the help of a class.
A class is a collection of objects that have

identical properties, common behavior and
shared relationship.

Once class is defined, any number of objects of
that class is created.

Classes are user defined data types.

A class can hold both data and functions.
For example: Planets, sun, moon

are member of class solar system.

Prof. K. Adisesha 8

Data Abstraction, Data Abstraction,
EncapsulationEncapsulation
& Data Hiding & Data Hiding Data Abstraction:
◦ Data Abstraction refers to the process of representing

essential features without including background details
or explanations.

Data Encapsulation:
◦ The wrapping of data and functions into a single unit

(class) is called data encapsulation.
◦ Data encapsulation enables data hiding and information

hiding.

◦ Data hiding is a method used in object oriented
programming to hide information within

computer code.
Prof. K. Adisesha 9

InheritanceInheritance
Inheritance is the process by which one object

can acquire and use the properties of another
object.

The existing class is known as base class or super class.
The new class is known as derived class or sub class.
The derived class shares some of the properties of the base

class. Therefore a code from a base class can be

reused by a derived class.

Prof. K. Adisesha 10

OverloadingOverloading
Overloading allows objects to have different

meaning depending upon context.
There are two types of overloading viz.

o Operator Overloading

o Function Overloading
When an existing operator operates on new data

type is called operator overloading.
Function overloading means two or more

function have same name, but differ in the
number of arguments or data type of arguments.

Prof. K. Adisesha 11

PolymorphismPolymorphism
The ability of an operator and function to take
multiple forms is known as Polymorphism.
The different types of polymorphism are operator
overloading and function overloading.

Prof. K. Adisesha 12

Dynamic binding & Message Dynamic binding & Message
PassingPassing

Dynamic binding:
◦ Binding is the process of connecting one program to another.

◦ Dynamic binding is the process of linking the procedure call
to a specific sequence of code or function at run time or
during the execution of the program.

Message Passing:
◦ In OOP’s, processing is done by sending message to objects.

◦ A message for an object is request for execution of
procedure.

◦ Message passing involves specifying the name of the object,
the name of the function (message) and the information to be
sent.

Prof. K. Adisesha 13

Advantage of OOP’sAdvantage of OOP’s
 The programs are modularized based on the principles of classes

and objects.
 Linking code & object allows related objects to share common

code. This reduces code duplication and code reusability.
 Creation and implementation of OOP code is easy and reduces

software development time.
 The concept of data abstraction separates object specification and

object implementation.
 Data encapsulated along with functions. Therefore external non-

member function cannot access or modify data, thus proving data
security.

 Easier to develop complex software, because complexity can be
minimized through inheritance.

 OOP can communicate through message passing which makes
interface description with outside system very simple.Prof. K. Adisesha 14

Disadvantage of OOP’sDisadvantage of OOP’s
Larger program size: OOP’s typically involves more lines of

code than procedural programs.
Slower Programs: OOP’s typically slower than procedure

based programs, as they typically require more instructions to
be executed.

Not suitable for all types of programs.
To convert a real world problem into an object oriented

model is difficult.
OOP’s software development, debugging and testing tools are

not standardized.
Polymorphism and dynamic binding also requires processing

time, due to overload of function calls during run time.

Prof. K. Adisesha 15

Application of OOP’sApplication of OOP’s
Computer graphics applications.
CAD/CAM software
Object-oriented database.
User-Interface design such as windows
Real-time systems.
Simulation and Modeling
Artificial intelligence and expert systems.
Client-Server Systems.

Prof. K. Adisesha 16

	Object Oriented Concepts
	classandobjectunit2-150824133722-lva1-app6891
	Module V

