
BCSE102L –Structured and Object 
oriented Programming (Theory)

Module VI
Inheritance

Dr.R.Priyadarshini, SCOPE - VIT-C++ 1



What Is Inheritance?

• Provides a way to create a new class from an 
existing class

• The new class is a specialized version of the 
existing class

Dr.R.Priyadarshini, SCOPE - VIT-C++ 2



Example: Insect Taxonomy

3Dr.R.Priyadarshini, SCOPE - VIT-C++



The "is a" Relationship

• Inheritance establishes an "is a" 

relationship between classes.

– A poodle is a dog

– A car is a vehicle

– A flower is a plant

– A football player is an athlete

Dr.R.Priyadarshini, SCOPE - VIT-C++ 4



Inheritance – Terminology and 
Notation in C++

• Base class (or parent) – inherited from

• Derived class (or child) – inherits from the base class

• Notation:
class Student // base class

{

. . .

};

class UnderGrad : public student 

{ // derived class

. . .

};

5Dr.R.Priyadarshini, SCOPE - VIT-C++



Back to the ‘is a’ Relationship

• An object of a derived class 'is a(n)' object of 
the base class

• Example: 

– an UnderGrad is a Student

– a Mammal is an Animal

• A derived object has all of the characteristics 
of the base class

Dr.R.Priyadarshini, SCOPE - VIT-C++ 6



What Does a Child Have?

An object of the derived class has:

• all members defined in child class

• all members declared in parent class

An object of the derived class can use:

• all public members defined in child class

• all public members defined in parent 
class

Dr.R.Priyadarshini, SCOPE - VIT-C++ 7



Protected Members and                   
Class Access

• protected member access 
specification: like private, but 
accessible by objects of derived class

• Class access specification: determines 
how private, protected, and 
public members of base class are 
inherited by the derived class

Dr.R.Priyadarshini, SCOPE - VIT-C++ 8



Class Access Specifiers

1) public – object of derived class can be 
treated as object of base class (not vice-
versa)

2) protected – more restrictive than 
public, but allows derived classes to know 
details of parents

3) private – prevents objects of derived 
class from being treated as objects of base 
class.

Dr.R.Priyadarshini, SCOPE - VIT-C++ 9



Inheritance vs. Access 

Dr.R.Priyadarshini, SCOPE - VIT-C++ 10

private: x

protected: y

public: z

private: x

protected: y

public: z

private: x

protected: y

public: z

Base class members

x is inaccessible

private: y

private: z

x is inaccessible

protected: y

protected: z

x is inaccessible

protected: y

public: z

How inherited base class 
members

appear in derived class
private
base class

protected
base class

public
base class



Inheritance vs. Access

Dr.R.Priyadarshini, SCOPE - VIT-C++ 11

private members:
char letter;
float score;
void calcGrade();

public members:
void setScore(float);
float getScore();
char getLetter();

class Grade

private members:
int numQuestions;
float pointsEach;
int numMissed;

public members:
Test(int, int);

class Test : public Grade

When Test class inherits

from Grade class using 

public class access, it 

looks like this:

private members:
int numQuestions:
float pointsEach;
int numMissed;

public members:
Test(int, int);
void setScore(float);
float getScore();
char getLetter();



Inheritance vs. Access

Dr.R.Priyadarshini, SCOPE - VIT-C++ 12

private members:
char letter;
float score;
void calcGrade();

public members:
void setScore(float);
float getScore();
char getLetter();

class Grade

private members:
int numQuestions;
float pointsEach;
int numMissed;

public members:
Test(int, int);

When Test class inherits

from Grade class using 

protected class access, it 

looks like this:

private members:
int numQuestions:
float pointsEach;
int numMissed;

public members:
Test(int, int);

protected members:
void setScore(float);
float getScore();
float getLetter();

class Test : protected Grade



Inheritance vs. Access

Dr.R.Priyadarshini, SCOPE - VIT-C++ 13

private members:
int numQuestions:
float pointsEach;
int numMissed;
void setScore(float);
float getScore();
float getLetter();

public members:
Test(int, int);

private members:
char letter;
float score;
void calcGrade();

public members:
void setScore(float);
float getScore();
char getLetter();

class Grade

private members:
int numQuestions;
float pointsEach;
int numMissed;

public members:
Test(int, int);

When Test class inherits

from Grade class using 

private class access, it 

looks like this:

class Test : private Grade



Constructors and Destructors in Base 
and Derived Classes

• Derived classes can have their own 
constructors and destructors

• When an object of a derived class is created, 
the base class’s constructor is executed first, 
followed by the derived class’s constructor

• When an object of a derived class is 
destroyed, its destructor is called first, then 
that of the base class 

Dr.R.Priyadarshini, SCOPE - VIT-C++ 14



Constructors and Destructors in Base 
and Derived Classes

Dr.R.Priyadarshini, SCOPE - VIT-C++ 15



Constructors and Destructors in Base 
and Derived Classes

Dr.R.Priyadarshini, SCOPE - VIT-C++ 16



Constructors and Destructors in Base 
and Derived Classes

Dr.R.Priyadarshini, SCOPE - VIT-C++ 17



Passing Arguments to 
Base Class Constructor

• Allows selection between multiple base class 
constructors

• Specify arguments to base constructor on 
derived constructor heading:
Square::Square(int side) : 

Rectangle(side, 

side) 

• Can also be done with inline constructors

• Must be done if base class has no default 
constructor

Dr.R.Priyadarshini, SCOPE - VIT-C++ 18



Passing Arguments to 
Base Class Constructor

Dr.R.Priyadarshini, SCOPE - VIT-C++ 19

Square::Square(int side):Rectangle(side,side)

derived class constructor base class constructor

derived constructor 
parameter

base constructor 
parameters



Redefining Base Class Functions

• Redefining function: function in a derived 
class that has the same name and parameter 
list as a function in the base class

• Typically used to replace a function in base 
class with different actions in derived class

Dr.R.Priyadarshini, SCOPE - VIT-C++ 20



Redefining Base Class Functions

• Not the same as overloading – with 
overloading, parameter lists must be different

• Objects of base class use base class version of 
function; objects of derived class use derived 
class version of function

Dr.R.Priyadarshini, SCOPE - VIT-C++ 21



Base Class

Dr.R.Priyadarshini, SCOPE - VIT-C++ 22



Derived Class

Dr.R.Priyadarshini, SCOPE - VIT-C++ 23

Redefined setScore function



Driver Program

Dr.R.Priyadarshini, SCOPE - VIT-C++ 24



Problem with Redefining

• Consider this situation:
– Class BaseClass defines functions x() and y().   
x() calls y(). 

– Class DerivedClass inherits from BaseClass and 
redefines function y().

– An object D of class DerivedClass is created and 
function x() is called.  

– When x() is called, which y() is used, the one 
defined in BaseClass or the the redefined one in 
DerivedClass?

Dr.R.Priyadarshini, SCOPE - VIT-C++ 25



Problem with Redefining

Dr.R.Priyadarshini, SCOPE - VIT-C++ 26

BaseClass

DerivedClass

void X();

void Y();

void Y();

DerivedClass D;

D.X();

Object D invokes function X()

In BaseClass.  Function X()

invokes function Y() in BaseClass, not 

function Y() in DerivedClass,

because function calls are  bound at 
compile time.  This is static binding.



Class Hierarchies

Dr.R.Priyadarshini, SCOPE - VIT-C++ 27

• A base class can be derived from another base 
class.



Class Hierarchies

Dr.R.Priyadarshini, SCOPE - VIT-C++ 28

• Consider the GradedActivity, FinalExam, 
PassFailActivity, PassFailExam hierarchy in Chapter 
15.



Polymorphism and Virtual Member 
Functions

• Virtual member function: function in base class that 
expects to be redefined in derived class

• Function defined with key word virtual:
virtual void Y() {...}

• Supports dynamic binding: functions bound at run 
time to function that they call

• Without virtual member functions, C++ uses static
(compile time) binding

Dr.R.Priyadarshini, SCOPE - VIT-C++ 29



Polymorphism and Virtual Member 
Functions

Dr.R.Priyadarshini, SCOPE - VIT-C++ 30

Because the parameter in the displayGrade function is a GradedActivity 

reference variable, it can reference any object that is derived from 

GradedActivity. That means we can pass a GradedActivity object, a 

FinalExam object, a PassFailExam object, or any other object that is 

derived from GradedActivity.

A problem occurs in Program 15-10 however...



Dr.R.Priyadarshini, SCOPE - VIT-C++ 31



Dr.R.Priyadarshini, SCOPE - VIT-C++ 32

As you can see from the example output, the getLetterGrade member 

function returned ‘C’ instead of ‘P’. This is because the GradedActivity 
class’s getLetterGrade function was executed instead of the 

PassFailActivity class’s version of the function.



Static Binding

• Program 15-10 displays 'C' instead of 'P' 
because the call to the getLetterGrade
function is statically bound (at compile time) 
with the GradedActivity class's version of the 
function.
We can remedy this by making the function 
virtual.

Dr.R.Priyadarshini, SCOPE - VIT-C++ 33



Virtual Functions

• A virtual function is dynamically bound to calls 
at runtime.
At runtime, C++ determines the type of object 
making the call, and binds the function to the 
appropriate version of the function.

Dr.R.Priyadarshini, SCOPE - VIT-C++ 34



Virtual Functions

• To make a function virtual, place the virtual 
key word before the return type in the base 
class's declaration:

virtual char getLetterGrade() const;

• The compiler will not bind the function to 
calls. Instead, the program will bind them at 
runtime.

Dr.R.Priyadarshini, SCOPE - VIT-C++ 35



Updated Version of GradedActivity

Dr.R.Priyadarshini, SCOPE - VIT-C++ 36

The function                                  

is now virtual.

The function also becomes 

virtual in all derived classes 

automatically!



Polymorphism

37

If we recompile our program with the updated versions of 

the classes, we will get the right output, shown here: 

(See Program 15-11 in the book.)

This type of behavior is known as polymorphism. The term 

polymorphism means the ability to take many forms.

Program 15-12 demonstrates polymorphism by passing

objects of the GradedActivity and PassFailExam classes to 

the displayGrade function.

Dr.R.Priyadarshini, SCOPE - VIT-C++



Dr.R.Priyadarshini, SCOPE - VIT-C++ 38



Dr.R.Priyadarshini, SCOPE - VIT-C++ 39



Polymorphism Requires References or 
Pointers

• Polymorphic behavior is only possible when 
an object is referenced by a reference variable 
or a pointer, as demonstrated in the 
displayGrade function.

Dr.R.Priyadarshini, SCOPE - VIT-C++ 40



Base Class Pointers

Dr.R.Priyadarshini, SCOPE - VIT-C++ 41

• Can define a pointer to a base class object

• Can assign it the address of a derived class 
object



Base Class Pointers

• Base class pointers and references only know about 
members of the base class

– So, you can’t use a base class pointer to call a derived class 
function

• Redefined functions in derived class will be ignored 
unless base class declares the function virtual

Dr.R.Priyadarshini, SCOPE - VIT-C++ 42



Redefining vs. Overriding

• In C++, redefined functions are statically 
bound and overridden functions are 
dynamically bound.
So, a virtual function is overridden, and a 
non-virtual function is redefined.

Dr.R.Priyadarshini, SCOPE - VIT-C++ 43



Virtual Destructors

• It's a good idea to make destructors 
virtual if the class could ever become a 
base class.

• Otherwise, the compiler will perform 
static binding on the destructor if the 
class ever is derived from.

• See Program 15-14 for an example

Dr.R.Priyadarshini, SCOPE - VIT-C++ 44



Abstract Base Classes and Pure Virtual 
Functions

• Pure virtual function: a virtual member 
function that must be overridden in a derived 
class that has objects

• Abstract base class contains at least one pure 
virtual function:
virtual void Y() = 0;

• The = 0 indicates a pure virtual function

• Must have no function definition in the base 
class

Dr.R.Priyadarshini, SCOPE - VIT-C++ 45



Abstract Base Classes and Pure Virtual 
Functions

• Abstract base class: class that can have no 
objects.  Serves as a basis for derived classes 
that may/will have objects

• A class becomes an abstract base class when 
one or more of its member functions is a pure 
virtual function

Dr.R.Priyadarshini, SCOPE - VIT-C++ 46



Multiple Inheritance

Dr.R.Priyadarshini, SCOPE - VIT-C++ 47

• A derived class can have more than one base 
class

• Each base class can have its own access 
specification in derived class's definition:
class cube : public square, 

public rectSolid;

class
square

class
rectSolid

class
cube



Multiple Inheritance

• Problem:  what if base classes have member 
variables/functions with the same name?

• Solutions:
– Derived class redefines the multiply-defined 

function
– Derived class invokes member function in a 

particular base class using scope resolution 
operator ::

• Compiler errors occur if derived class uses 
base class function without one of these 
solutions

Dr.R.Priyadarshini, SCOPE - VIT-C++ 48



Inheritance is the process by which new classes called derived 
classes are created from existing classes called base classes.

The derived classes have all the features of the base class and the 
programmer can choose to add new features specific to the newly 
created derived class.

The idea of inheritance implements the is a relationship. For 
example, mammal IS-A animal, dog IS-A mammal hence dog IS-A 
animal as well and so on.

WHAT IS AN INHERTANCE?



WHAT IS AN INHERTANCE?   contd…

MAMMAL
All mammals have 
certain characteristics.

Dog is a mammal. It has all features of 
mammals in addition to its own unique 
features

Cat is a mammal. It has all features of 
mammals in addition to its own unique 
features



Reusability of Code
Saves Time and Effort
Faster development, easier maintenance and easy 

to extend
Capable of expressing the inheritance relationship 

and its transitive nature which ensures closeness 
with real world problems .

FEATURES /ADVANTAGES OF 
INHERITANCE



To create a derived class from an already existing base class the syntax 
is:

class derived-class: access-specifier base-class
{                

….

}

Where access specifier is one of public, protected, or private.

SYNTAX



For example, if the base class is animals and 
the derived class is amphibians it is specified 
as:

class animals  //base class
{  

…….
};

class amphibians : public animals
{ //derived class

…..
};

SYNTAX   contd……

In this example class amphibians 
have access to both public and 
protected members of base class 
animals.

NOTE: A class can be derived from 
more than one class, which means it 
can inherit data and functions from 
multiple base classes. In that case a 
class derivation lists names of one 
or more base classes each 
separated by comma.



 A derived class can access all the protected and public members of its base class.
 It can not access private members of the base class. 

ACCESS CONTROL AND INHERITENCE

PRIVATE

PROTECTED

PUBLIC
BASE CLASS

CHILD CLASS

CAN NOT BE INHERITED



We can summarize the different access types according to who can access them in 
the following way:

Access public protected private
Same class yes yes yes
Derived classes yes yes no
Outside classes yes no no

NOTE: Constructors and destructors of the base class are never inherited.

ACCESS CONTROL AND INHERITENCE   contd…



VISIBILTY MODES AND INHERITANCE
A child class can inherit base class in three ways. These are:

PRIVATE PROTECTED PUBLIC

PRIVATE NOT 
INHERITED

Become private 
of child class

Become private 
of child class

PROTECTED NOT 
INHERITED

Become protected 
members of child class

Become protected 
members of child class

PUBLIC NOT 
INHERITED

Become protected 
members of child class

Become public members 
of child class



PRIVATE

BASE 
CLASS

PRIVATE
CHILD 
CLASS

PRIVATE

BASE 
CLASS

PRIVATE
CHILD 
CLASS

PRIVATE

BASE 
CLASS

PRIVATE
CHILD 
CLASS

PROTECTED

PROTECTED PROTECTED

PROTECTEDPROTECTED

PROTECTED

PUBLIC

PUBLIC PUBLICPUBLIC

PUBLICPUBLIC

PRIVATE INHERTANCE PROTECTED INHERITANCE PUBLIC  INHERITANCE



PRIVATE INHERITANCE

class child : private base
{
private:
int x;
void funcx();
protected:
int y;
void funcy();
public:
int z;
void funcz();
} 

class child
{
private:
int x;
void funcx();
int b;
void funcb();
int c;
void funcc();
protected:
int y;
void funcy();
public:
int z;
void funcz();
}

In private inheritance protected and public members of the base class become the 
private members of the derived class.

class base
{
private:
int a;
void funca();
protected:
int b;
void funcb();
public:
int c;
void funcc();
} 

Private
inheritance

New child class after inheritance

Protected members 
inherited from base 

class

Public members 
inherited from base 

class



PROTECTED INHERITANCE

class child : protected base
{
private:
int x;
void funcx();
protected:
int y;
void funcy();
public:
int z;
void funcz();
} 

class child
{
private:
int x;
void funcx();
protected:
int y;
void funcy();
int b;
void funcb();
int c;
void funcc();
public:
int z;
void funcz();
}

In protected inheritance protected and public members of the base class become the 
protected members of the derived class.

class base
{
private:
int a;
void funca();
protected:
int b;
void funcb();
public:
int c;
void funcc();
} 

Protected
inheritance

New child class after inheritance

Protected members 
inherited from base 

class

Public members 
inherited from base 

class



PUBLIC INHERITANCE

class child : public base
{
private:
int x;
void funcx();
protected:
int y;
void funcy();
public:
int z;
void funcz();
} 

class child
{
private:
int x;
void funcx();
protected:
int y;
void funcy();
int b;
void funcb();
public:
int z;
void funcz();
int c;
void funcc();
}

In protected inheritance protected members become the protected members of the base class and 
public members of the base class become the public members of the derived class.

class base
{
private:
int a;
void funca();
protected:
int b;
void funcb();
public:
int c;
void funcc();
} 

Public
inheritance

New child class after inheritance

Protected members 
inherited from base 

class

Public members 
inherited from base 

class



TYPES OF INHERITANCE

There are five different types of inheritance:

1. Single Inheritance
2. Multiple Inheritance
3. Multilevel Inheritance
4. Hierarchical Inheritance
5. Hybrid Inheritance



SINGLE INHERITENCE

Single inheritance is the one where you have a single base 
class and a single derived class.



EXAMPLE

class student
{
private:
char name[20];
float marks;
protected:
void result();
public:
student();
void enroll();
void display();
}

class course : public student
{
long course_code;
char course_name;
public:
course();
void commence();
void cdetail();
}

STUDENT

COURSE



MULTILEVEL INHERITENCE

In Multi level inheritance, a subclass inherits from a 
class that itself inherits from another class.



EXAMPLE

class furniture
{
char type;
char model[10];
public:
furniture();
void readdata();
void dispdata();
}

class sofa: public furniture
{
int no_of_seats;
float cost;
public:
void indata();
void outdata();
};

class office: private sofa
{
int no_of_pieces;
char delivery_date[10];
public:
void readdetails()
void displaydetails();
}

FURNITURE

OFFICE

SOFA



MULTIPLE INHERITENCE

In Multiple inheritances, a derived class inherits from multiple base 
classes. It has properties of both the base classes.



MULTIPLE INHERITENCE
EXAMPLE

class chaiperson
{
long chairid;
char name[20];
protected:
char description[20];
void allocate();
public:
chairperson();
void assign();
void show();
};

class director
{
long directorid;
char dname[20];
public:
director();
void entry();
void display();
};

class company: private 
chairperson, public director
{
int companyid;
char city[20];
char country[20];
public:
void ctentry();
void ctdisplay();
};

COMPANY

CHAIRPERSON DIRECTOR



HIERARCHICAL INHERITENCE

In hierarchical Inheritance, it's like an inverted tree. So 
multiple classes inherit from a single base class.



HIERARCHICAL INHERITENCE
EXAMPLE

class toys
{
char tcode[5];
protected:
float price;
void assign(float);
public:
toys();
void tentry();
void tdisplay();
};

class softtoys: public toys
{
chat stname[20];
float weight;
public:
softtoys();
void stentry();
void stdisplay();
};

class electronictoys: public 
toys
{
char etname[20];
int no_of_batteries;
public:
void etentry();
void etdisplay();
};

TOYS

ELECTRONIC 
TOYS

SOFT 
TOYS



HYBRID INHERITENCE

It combines two or more types of inheritance. In this type of 
inheritance we can have a mixture of number of 
inheritances.



CONSTRUCTORS AND DESTRUCTORS IN 
BASE AND DERIVED CLASSES

 Derived classes can have their own constructors and 
destructors.

When an object of a derived class is created, the base 
class’s constructor is executed first, followed by the derived 
class’s constructor.

When an object of a derived class goes out of scope, its 
destructor is called first, then that of the base class.



IMPROTANT POINTS TO 
NOTE

 Calculating the size of the object of the child class:
 While calculating the size of the object of the child class, add the size of all data members 

of base class including the private members of the base class and the child class.
 If child class is inheriting from multiple base classes, add the size of data members of all 

base classes and the child class.
 In case of multilevel inheritance the size of all base classes(directly /indirectly) inherited by 

child class is added to the size of child class data members

 Members accessible to the object of the child class:
Only public members of the new modified child class(after inheritance) are accessible to the 

object of the child class.

 Members accessible to the functions of the child class:
All members: public, protected, private, of the new modified child class(after inheritance) 

are accessible to the functions of the child class.



If a base class has parametrized constructor then it is the duty of child class to pass the 
parameters for base class constructor also at the time of creation of object.

PASSING ARGUMENTS TO BASE CLASS CONSTRUCTOR

class student
{
private:
char name[20];
float marks;
protected:
void result();
public:
student(char nam[20], float mar);
void enroll();
void display();
}

class course : public student
{
long course_code;
char course_name[20];
public:

course(long cc, char cn[20],char nam[20], float mar ) : 
student(char nam[20], float mar);

void commence();
void cdetail();
}
course c1(01,”CS”,”Naman”, 460);

Base class 
constructor

Child class 
constructor

Base class constructor 
parameters


	CS1Lesson15-Inheritance
	inheritanceinc-160827142920

