
1

Polymorphism

Module -VII

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



2

Polymorphism – An Introduction

 noun, the quality or state of being able to assume different 

forms - Webster

 An essential feature of an OO Language

 It builds upon Inheritance

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



3

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



Polymorphism-Shapes

4

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



A Real Time Example

 A real-life example of polymorphism, a person at 
the same time can have different characteristics. 
Like a man at the same time is a father, a 
husband, an employee. 

 So the same person posses different behavior in 
different situations. This is called polymorphism. 
Polymorphism is considered as one of the 
important features of Object Oriented 
Programming.

5

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



6

Before we proceed…. 

 Inheritance – Basic Concepts

 Class Hierarchy
 Code Reuse, Easy to maintain

 Type of inheritance : public, private

 Function overriding

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



Function Overriding

 Function overriding is a feature that allows us to 
have a same function in child class which is 
already present in the parent class. 

 A child class inherits the data members and 
member functions of parent class, but when you 
want to override a functionality in the child class 
then you can use function overriding.

 It is like creating a new version of an old 
function, in the child class.

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai 7



#include <iostream>

using namespace std;

class BaseClass {

public:

void disp(){

cout<<"Function of Parent Class";

}

};

class DerivedClass: public BaseClass{

public:

void disp() {

cout<<"Function of Child Class";

}

};

int main() {

DerivedClass obj = DerivedClass();

obj.disp();

return 0;

}
Dr.R.Priyadarshini, SCOPE, VIT 

Chennai 8



9

Class Interface Diagram

Protected data:

hrs

mins

secs

ExtTime class

Set

Increment

Write

Time

Time

Set

Increment

Write

ExtTime

ExtTime

Private data:

zone

Time class

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



10

Why Polymorphism?--Review: 

Time and ExtTime Example by Inheritance

void  Print  (Time   someTime )  //pass an object by value
{

cout  <<  “Time is  “ ;
someTime.Write (  ) ;
cout  <<  endl ;

}

CLIENT  CODE

Time        startTime ( 8, 30, 0 ) ;
ExtTime    endTime (10, 45, 0, CST) ;

Print ( startTime ) ;
Print ( endTime ) ;

OUTPUT

Time is  08:30:00
Time is  10:45:00 

// Time :: write()

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



11

Static Binding 

 When the type of a formal parameter is a parent class, 
the argument used can be:

the same type as the formal parameter,

or,

any derived class type.

 Static binding is the compile-time determination
of which function to call for a particular object 
based on the type of the formal parameter 

 When pass-by-value is used, static binding occurs

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



12

Can we do better?     

void  Print  (Time   someTime )  //pass an object by value
{

cout  <<  “Time is  “ ;
someTime.Write (  ) ;
cout  <<  endl ;

}

Time        startTime ( 8, 30, 0 ) ;
ExtTime    endTime (10, 45, 0, CST) ;

Print ( startTime ) ;
Print ( endTime ) ;

OUTPUT

Time is  08:30:00
Time is  10:45:00 

// Time :: write()

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



13

Polymorphism – An Introduction

 noun, the quality or state of being able to assume different 

forms - Webster

 An essential feature of an OO Language

 It builds upon Inheritance

 Allows run-time interpretation of object type for 
a given class hierarchy

 Also Known as “Late Binding”

 Implemented in C++ using virtual functions

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



14

Dynamic Binding 

 Is the run-time determination of which function to 
call for a particular object of a derived class based 
on the type of the argument 

 Declaring a member function to be virtual instructs 
the compiler to generate code that guarantees 
dynamic binding 

 Dynamic binding requires pass-by-reference

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



15

Virtual Member Function

class  Time
{

public : 

.  .  .

virtual void   Write ( )  ; //  for dynamic binding
virtual ~Time(); // destructor

private :

int             hrs ;           
int             mins ;          
int secs ;

} ;

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



16

This is the way we like to see…

void  Print  (Time * someTime )
{

cout  <<  “Time is  “ ;
someTime->Write (  ) ;
cout  <<  endl ;

}

Time          startTime( 8, 30, 0 ) ; 
ExtTime    endTime(10, 45, 0, CST) ;

Time *timeptr;
timeptr = &startTime;
Print ( timeptr ) ;

timeptr = &endTime;
Print ( timeptr ) ;

OUTPUT

Time is  08:30:00
Time is  10:45:00  CST

Time::write()

ExtTime::write()Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



17

Virtual Functions 

 Virtual Functions overcome the problem of run time object 
determination

 Keyword virtual instructs the compiler to use late binding 
and delay the object interpretation

 How ?
 Define a virtual function in the base class. The word virtual 

appears only in the base class
 If a base class declares a virtual function, it must 

implement that function, even if the body is empty 
 Virtual function in base class stays virtual in all the derived 

classes
 It can be overridden in the derived classes

 But, a derived class is not required to re-implement a 
virtual function.  If it does not, the base class version 
is used 

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



18

Polymorphism Summary:

 When you use virtual functions, compiler store 
additional information about the types of object 
available and created

 Polymorphism is supported at this additional 
overhead

 Important :

 virtual functions work only with pointers/references

 Not with objects even if the function is virtual

 If a class declares any virtual methods, the 
destructor of the class should be declared as virtual 
as well. 

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



#include <iostream>

using namespace std;

class base {

public:

virtual void print(){

cout << "print base class" << endl;

}

void show(){

cout << "show base class" << endl;

}

};

class derived : public base {

public:

void print(){

cout << "print derived class" << endl;

}

void show(){

cout << "show derived class" << endl;

}

};

int main(){

base* bptr;

derived d;

bptr = &d;

//calling virtual function

bptr->print();

//calling non-virtual 
function

bptr->show();

}

Output:

print derived class

show base class
19

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



20

Abstract Classes & Pure Virtual Functions

 Some classes exist logically but not physically.

 Example : Shape
 Shape s; // Legal but silly..!! : “Shapeless shape”

 Shape makes sense only as a base of some classes 
derived from it. Serves as a “category”

 Hence instantiation of such a class must be prevented 

class Shape    //Abstract

{

public :

//Pure virtual Function

virtual void draw() = 0;

}

 A class with one or more pure virtual  
functions is an Abstract Class

 Objects of abstract class can’t be  
created

Shape s; // error : variable of an abstract class
Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



21

Example

Shape

virtual void draw()

Circle

public void draw()

Triangle

public void draw()

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



22

 A pure virtual function not defined in the derived 
class remains a pure virtual function.

 Hence derived class also becomes abstract

class Circle : public Shape { //No draw() - Abstract

public :

void print(){

cout << “I am a circle” << endl;

}

class Rectangle : public Shape {

public :

void draw(){ // Override Shape::draw()

cout << “Drawing Rectangle” << endl;

}

Rectangle r; // Valid

Circle c; // error : variable of an abstract class

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



23

Pure virtual functions : Summary

 Pure virtual functions are useful because they 
make explicit the abstractness of a class

 Tell both the user and the compiler how it was 
intended to be used  

 Note : It is a good idea to keep the common code 
as close as possible to the root of you hierarchy

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



24

Summary ..continued

 It is still possible to provide definition of a pure virtual 
function in the base class

 The class still remains abstract and functions must be 
redefined in the derived classes, but a common piece of 
code can be kept there to facilitate reuse

 In this case, they can not be declared inline

class Shape { //Abstract

public :

virtual void draw() = 0;

};

// OK, not defined inline

void Shape::draw(){

cout << “Shape" << endl;

}

class Rectangle : public Shape 

{

public :

void draw(){

Shape::draw(); //Reuse

cout <<“Rectangle”<< endl;

}

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



25

Summary

 Polymorphism is built upon class inheritance

 It allows different versions of a function to be 
called in the same manner, with some overhead

 Polymorphism is implemented with virtual 
functions, and requires pass-by-reference

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



Static Polymorphism

 C++ Overloading (Function and Operator)

 If we create two or more members having the 
same name but different in number or type of 
parameter, it is known as C++ overloading. In C++, 
we can overload:

 methods,

 constructors

26

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



Types of overloading

27

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



Function Overloading

 Function Overloading is defined as the process of 
having two or more function with the same name, 
but different in parameters is known as function 
overloading in C++.

 In function overloading, the function is 
redefined by using either different types of 
arguments or a different number of arguments. 

 It is only through these differences compiler can 
differentiate between the functions.

28

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



Advantages of Function Overloading

 The advantage of Function overloading is that it 
increases the readability of the program because 
you don't need to use different names for the 
same action.

29

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



#include <iostream>    

using namespace std;    

class Cal {    

public:    

static int add(int a,int b){      

return a + b;      

}      

static int add(int a, int b, int c)      

{      

return a + b + c;      

}      

};     

int main(void) {    

Cal C;                                                    //     class 
object declaration.   

cout<<C.add(10, 20)<<endl;      

cout<<C.add(12, 20, 23);     

return 0;    

} 
30

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



#include<iostream>  

using namespace std;  

int mul(int,int);  

float mul(float,int);  

int mul(int a,int b)  

{  

return a*b;  

}  

float mul(double x, int y)  

{  

return x*y;  

}  

int main()  

{  

int r1 = mul(6,7);  

float r2 = mul(0.2,3);   

std::cout << "r1 is : " <<r1<< std::endl;  

std::cout <<"r2 is : "  <<r2<< std::endl;  

return 0;  

} 31

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



Causes of Function Overloading:

 Type Conversion.

 Function with default arguments.

 Function with pass by reference.

32

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



Type Conversion:
#include<iostream>  

using namespace std;  

void fun(int);  

void fun(float);  

void fun(int i)  

{  

std::cout << "Value of i is : " <<i<< std::endl;  

}  

void fun(float j)  

{  

std::cout << "Value of j is : " <<j<< std::endl;  

}  

int main()  

{  

fun(12);  

fun(1.2);  

return 0;  

} 
33

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



#include<iostream>  

using namespace std;  

void fun(int);  

void fun(int,int);  

void fun(int i)  

{  

std::cout << "Value of i is : " <<i<< std::endl;  

}  

void fun(int a,int b=9)  

{  

std::cout << "Value of a is : " <<a<< std::endl;  

std::cout << "Value of b is : " <<b<< std::endl;  

}  

int main()  

{  

fun(12);  

return 0;  

} 
34

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



#include <iostream>

using namespace std;

void fun(int);

void fun(int &);

int main()

{

int a=10;

fun(a); // error, which f()?

return 0;

}

void fun(int x)

{

std::cout << "Value of x is : " <<x<< std::endl;

}

void fun(int &b)

{

std::cout << "Value of b is : " <<b<< std::endl;

}

35

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



Operator that cannot be overloaded are as 

follows:

 Scope operator (::)

 Sizeof

 member selector(.)

 member pointer selector(*)

 ternary operator(?:)

36

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



 Rules of Operator Overloading

 Existing operators can only be overloaded, but the 
new operators cannot be overloaded.

 The overloaded operator contains at least one 
operand of the user-defined data type.

 We cannot use friend function to overload certain 
operators. 

 When unary operators are overloaded through a 
member function take no explicit arguments

 When binary operators are overloaded through a 
member function takes one explicit argument.

37

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



C++ Operators Overloading Example

#include <iostream>    

using namespace std;    

class Test    

{    

private:    

int num;    

public:    

Test(): num(8){}    

void operator ++()         {     

num = num+2;     

}    

void Print() {     

cout<<"The Count is: "<<num;     

}    

};    

int main()    

{    

Test tt;    

++tt;  // calling of a 
function "void operator 
++()"    

tt.Print();    

return 0;    

} 

Output

10
38

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



#include <iostream>  

using namespace std;  

class A  

{      

int x;  

public:  

A(){}  

A(int i)  

{         x=i;  

}  

void operator+(A);  

void display();  

};  

void A :: operator+(A a)  

{  

int m = x+a.x;  

cout<<"The result of the addition of two 
objects is : "<<m;  

} 

int main()  

{  

A a1(5);  

A a2(4);  

a1+a2;  

return 0;  

} 

Output

9

39

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai


