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Polymorphism – An Introduction

 noun, the quality or state of being able to assume different 

forms - Webster

 An essential feature of an OO Language

 It builds upon Inheritance
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Polymorphism-Shapes
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A Real Time Example

 A real-life example of polymorphism, a person at 
the same time can have different characteristics. 
Like a man at the same time is a father, a 
husband, an employee. 

 So the same person posses different behavior in 
different situations. This is called polymorphism. 
Polymorphism is considered as one of the 
important features of Object Oriented 
Programming.
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Before we proceed…. 

 Inheritance – Basic Concepts

 Class Hierarchy
 Code Reuse, Easy to maintain

 Type of inheritance : public, private

 Function overriding
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Function Overriding

 Function overriding is a feature that allows us to 
have a same function in child class which is 
already present in the parent class. 

 A child class inherits the data members and 
member functions of parent class, but when you 
want to override a functionality in the child class 
then you can use function overriding.

 It is like creating a new version of an old 
function, in the child class.
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#include <iostream>

using namespace std;

class BaseClass {

public:

void disp(){

cout<<"Function of Parent Class";

}

};

class DerivedClass: public BaseClass{

public:

void disp() {

cout<<"Function of Child Class";

}

};

int main() {

DerivedClass obj = DerivedClass();

obj.disp();

return 0;

}
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Class Interface Diagram

Protected data:
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ExtTime class
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Private data:
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Why Polymorphism?--Review: 

Time and ExtTime Example by Inheritance

void  Print  (Time   someTime )  //pass an object by value
{

cout  <<  “Time is  “ ;
someTime.Write (  ) ;
cout  <<  endl ;

}

CLIENT  CODE

Time        startTime ( 8, 30, 0 ) ;
ExtTime    endTime (10, 45, 0, CST) ;

Print ( startTime ) ;
Print ( endTime ) ;

OUTPUT

Time is  08:30:00
Time is  10:45:00 

// Time :: write()
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Static Binding 

 When the type of a formal parameter is a parent class, 
the argument used can be:

the same type as the formal parameter,

or,

any derived class type.

 Static binding is the compile-time determination
of which function to call for a particular object 
based on the type of the formal parameter 

 When pass-by-value is used, static binding occurs
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Can we do better?     

void  Print  (Time   someTime )  //pass an object by value
{

cout  <<  “Time is  “ ;
someTime.Write (  ) ;
cout  <<  endl ;

}

Time        startTime ( 8, 30, 0 ) ;
ExtTime    endTime (10, 45, 0, CST) ;

Print ( startTime ) ;
Print ( endTime ) ;

OUTPUT

Time is  08:30:00
Time is  10:45:00 

// Time :: write()
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Polymorphism – An Introduction

 noun, the quality or state of being able to assume different 

forms - Webster

 An essential feature of an OO Language

 It builds upon Inheritance

 Allows run-time interpretation of object type for 
a given class hierarchy

 Also Known as “Late Binding”

 Implemented in C++ using virtual functions
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Dynamic Binding 

 Is the run-time determination of which function to 
call for a particular object of a derived class based 
on the type of the argument 

 Declaring a member function to be virtual instructs 
the compiler to generate code that guarantees 
dynamic binding 

 Dynamic binding requires pass-by-reference
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Virtual Member Function

class  Time
{

public : 

.  .  .

virtual void   Write ( )  ; //  for dynamic binding
virtual ~Time(); // destructor

private :

int             hrs ;           
int             mins ;          
int secs ;

} ;
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This is the way we like to see…

void  Print  (Time * someTime )
{

cout  <<  “Time is  “ ;
someTime->Write (  ) ;
cout  <<  endl ;

}

Time          startTime( 8, 30, 0 ) ; 
ExtTime    endTime(10, 45, 0, CST) ;

Time *timeptr;
timeptr = &startTime;
Print ( timeptr ) ;

timeptr = &endTime;
Print ( timeptr ) ;

OUTPUT

Time is  08:30:00
Time is  10:45:00  CST

Time::write()
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Virtual Functions 

 Virtual Functions overcome the problem of run time object 
determination

 Keyword virtual instructs the compiler to use late binding 
and delay the object interpretation

 How ?
 Define a virtual function in the base class. The word virtual 

appears only in the base class
 If a base class declares a virtual function, it must 

implement that function, even if the body is empty 
 Virtual function in base class stays virtual in all the derived 

classes
 It can be overridden in the derived classes

 But, a derived class is not required to re-implement a 
virtual function.  If it does not, the base class version 
is used 
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Polymorphism Summary:

 When you use virtual functions, compiler store 
additional information about the types of object 
available and created

 Polymorphism is supported at this additional 
overhead

 Important :

 virtual functions work only with pointers/references

 Not with objects even if the function is virtual

 If a class declares any virtual methods, the 
destructor of the class should be declared as virtual 
as well. 
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#include <iostream>

using namespace std;

class base {

public:

virtual void print(){

cout << "print base class" << endl;

}

void show(){

cout << "show base class" << endl;

}

};

class derived : public base {

public:

void print(){

cout << "print derived class" << endl;

}

void show(){

cout << "show derived class" << endl;

}

};

int main(){

base* bptr;

derived d;

bptr = &d;

//calling virtual function

bptr->print();

//calling non-virtual 
function

bptr->show();

}

Output:

print derived class

show base class
19

Dr.R.Priyadarshini, SCOPE, VIT 

Chennai



20

Abstract Classes & Pure Virtual Functions

 Some classes exist logically but not physically.

 Example : Shape
 Shape s; // Legal but silly..!! : “Shapeless shape”

 Shape makes sense only as a base of some classes 
derived from it. Serves as a “category”

 Hence instantiation of such a class must be prevented 

class Shape    //Abstract

{

public :

//Pure virtual Function

virtual void draw() = 0;

}

 A class with one or more pure virtual  
functions is an Abstract Class

 Objects of abstract class can’t be  
created

Shape s; // error : variable of an abstract class
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Example

Shape

virtual void draw()

Circle

public void draw()

Triangle

public void draw()
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 A pure virtual function not defined in the derived 
class remains a pure virtual function.

 Hence derived class also becomes abstract

class Circle : public Shape { //No draw() - Abstract

public :

void print(){

cout << “I am a circle” << endl;

}

class Rectangle : public Shape {

public :

void draw(){ // Override Shape::draw()

cout << “Drawing Rectangle” << endl;

}

Rectangle r; // Valid

Circle c; // error : variable of an abstract class
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Pure virtual functions : Summary

 Pure virtual functions are useful because they 
make explicit the abstractness of a class

 Tell both the user and the compiler how it was 
intended to be used  

 Note : It is a good idea to keep the common code 
as close as possible to the root of you hierarchy
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Summary ..continued

 It is still possible to provide definition of a pure virtual 
function in the base class

 The class still remains abstract and functions must be 
redefined in the derived classes, but a common piece of 
code can be kept there to facilitate reuse

 In this case, they can not be declared inline

class Shape { //Abstract

public :

virtual void draw() = 0;

};

// OK, not defined inline

void Shape::draw(){

cout << “Shape" << endl;

}

class Rectangle : public Shape 

{

public :

void draw(){

Shape::draw(); //Reuse

cout <<“Rectangle”<< endl;

}
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Summary

 Polymorphism is built upon class inheritance

 It allows different versions of a function to be 
called in the same manner, with some overhead

 Polymorphism is implemented with virtual 
functions, and requires pass-by-reference
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Static Polymorphism

 C++ Overloading (Function and Operator)

 If we create two or more members having the 
same name but different in number or type of 
parameter, it is known as C++ overloading. In C++, 
we can overload:

 methods,

 constructors

26
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Types of overloading
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Function Overloading

 Function Overloading is defined as the process of 
having two or more function with the same name, 
but different in parameters is known as function 
overloading in C++.

 In function overloading, the function is 
redefined by using either different types of 
arguments or a different number of arguments. 

 It is only through these differences compiler can 
differentiate between the functions.

28
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Advantages of Function Overloading

 The advantage of Function overloading is that it 
increases the readability of the program because 
you don't need to use different names for the 
same action.

29
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#include <iostream>    

using namespace std;    

class Cal {    

public:    

static int add(int a,int b){      

return a + b;      

}      

static int add(int a, int b, int c)      

{      

return a + b + c;      

}      

};     

int main(void) {    

Cal C;                                                    //     class 
object declaration.   

cout<<C.add(10, 20)<<endl;      

cout<<C.add(12, 20, 23);     

return 0;    

} 
30
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#include<iostream>  

using namespace std;  

int mul(int,int);  

float mul(float,int);  

int mul(int a,int b)  

{  

return a*b;  

}  

float mul(double x, int y)  

{  

return x*y;  

}  

int main()  

{  

int r1 = mul(6,7);  

float r2 = mul(0.2,3);   

std::cout << "r1 is : " <<r1<< std::endl;  

std::cout <<"r2 is : "  <<r2<< std::endl;  

return 0;  

} 31
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Causes of Function Overloading:

 Type Conversion.

 Function with default arguments.

 Function with pass by reference.

32
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Type Conversion:
#include<iostream>  

using namespace std;  

void fun(int);  

void fun(float);  

void fun(int i)  

{  

std::cout << "Value of i is : " <<i<< std::endl;  

}  

void fun(float j)  

{  

std::cout << "Value of j is : " <<j<< std::endl;  

}  

int main()  

{  

fun(12);  

fun(1.2);  

return 0;  

} 
33
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#include<iostream>  

using namespace std;  

void fun(int);  

void fun(int,int);  

void fun(int i)  

{  

std::cout << "Value of i is : " <<i<< std::endl;  

}  

void fun(int a,int b=9)  

{  

std::cout << "Value of a is : " <<a<< std::endl;  

std::cout << "Value of b is : " <<b<< std::endl;  

}  

int main()  

{  

fun(12);  

return 0;  

} 
34
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#include <iostream>

using namespace std;

void fun(int);

void fun(int &);

int main()

{

int a=10;

fun(a); // error, which f()?

return 0;

}

void fun(int x)

{

std::cout << "Value of x is : " <<x<< std::endl;

}

void fun(int &b)

{

std::cout << "Value of b is : " <<b<< std::endl;

}

35
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Operator that cannot be overloaded are as 

follows:

 Scope operator (::)

 Sizeof

 member selector(.)

 member pointer selector(*)

 ternary operator(?:)

36
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 Rules of Operator Overloading

 Existing operators can only be overloaded, but the 
new operators cannot be overloaded.

 The overloaded operator contains at least one 
operand of the user-defined data type.

 We cannot use friend function to overload certain 
operators. 

 When unary operators are overloaded through a 
member function take no explicit arguments

 When binary operators are overloaded through a 
member function takes one explicit argument.

37
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C++ Operators Overloading Example

#include <iostream>    

using namespace std;    

class Test    

{    

private:    

int num;    

public:    

Test(): num(8){}    

void operator ++()         {     

num = num+2;     

}    

void Print() {     

cout<<"The Count is: "<<num;     

}    

};    

int main()    

{    

Test tt;    

++tt;  // calling of a 
function "void operator 
++()"    

tt.Print();    

return 0;    

} 

Output

10
38
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#include <iostream>  

using namespace std;  

class A  

{      

int x;  

public:  

A(){}  

A(int i)  

{         x=i;  

}  

void operator+(A);  

void display();  

};  

void A :: operator+(A a)  

{  

int m = x+a.x;  

cout<<"The result of the addition of two 
objects is : "<<m;  

} 

int main()  

{  

A a1(5);  

A a2(4);  

a1+a2;  

return 0;  

} 

Output

9
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