
Templates –C++
Dr.R.Priyadarshini, VIT SCOPE

Topics

• Class Templates

• Function Templates

• Standard Library Templates

Types of Templates

• Templates are powerful features of C++ which allows us to write
generic programs. There are two ways we can implement templates:

• Function Templates

• Class Templates

https://programiz.com/cpp-programming/function-template

Function Templates

Class Template Declaration

• A class template starts with the keyword template followed by
template parameter(s) inside <> which is followed by the class
declaration.

STL

• The C++ Standard Template Library (STL)

• The Standard Template Library (STL) is a set of C++ template classes to
provide common programming data structures and functions such as
lists, stacks, arrays, etc.

• It is a library of container classes, algorithms, and iterators. It is a
generalized library and so, its components are parameterized.

STL

• TL has four components

• Algorithms

• Containers

• Functions

• Iterators

STL- Algorithms

• The header algorithm defines a collection of functions especially
designed to be used on ranges of elements.

• They act on containers and provide means for various operations for
the contents of the containers.

• STL has an ocean of algorithms, for all < algorithm > library functions :
Refer here.

• Some of the most used algorithms on vectors and most useful one’s
in Competitive Programming are mentioned as follows :

https://www.geeksforgeeks.org/algorithms-library-c-stl/

https://www.geeksforgeeks.org/algorithms-library-c-stl/

Non-Manipulating Algorithms

• sort(first_iterator, last_iterator) – To sort the given vector.

• reverse(first_iterator, last_iterator) – To reverse a vector.

• *max_element (first_iterator, last_iterator) – To find the maximum
element of a vector.

• *min_element (first_iterator, last_iterator) – To find the minimum
element of a vector.

• accumulate(first_iterator, last_iterator, initial value of sum) – Does
the summation of vector elements

https://www.geeksforgeeks.org/sort-c-stl/

Non-Manipulating Algorithms

• count(first_iterator, last_iterator,x) – To count the occurrences of x in
vector.

• find(first_iterator, last_iterator, x) – Returns an iterator to the first
occurence of x in vector and points to last address of vector
((name_of_vector).end()) if element is not present in vector.

Vectors and Lists in C++
STL

C++ STL

• The C++ STL (Standard Template Library) is a powerful set of
C++ template classes to provide general-purpose classes and
functions with templates that implement many popular and
commonly used algorithms and data structures like vectors,
lists, queues, and stacks.

Components

Sr.No Component & Description

1 Containers
Containers are used to manage collections of objects of a certain kind. There are several
different types of containers like deque, list, vector, map etc.

2 Algorithms
Algorithms act on containers. They provide the means by which you will perform initialization,
sorting, searching, and transforming of the contents of containers.

3 Iterators
Iterators are used to step through the elements of collections of objects. These collections may
be containers or subsets of containers.

Container types

Container Description Header file iterator

vector vector is a class that creates a

dynamic array allowing insertions and

deletions at the back.

<vector> Random access

list list is the sequence containers that

allow the insertions and deletions from

anywhere.

<list> Bidirectional

deque deque is the double ended queue that

allows the insertion and deletion from

both the ends.

<deque> Random access

set set is an associate container for

storing unique sets.

<set> Bidirectional

multiset Multiset is an associate container for

storing non- unique sets.

<set> Bidirectional

map Map is an associate container for

storing unique key-value pairs, i.e.

each key is associated with only one

value(one to one mapping).

<map> Bidirectional

multimap multimap is an associate container for

storing key- value pair, and each key

can be associated with more than one

value.

<map> Bidirectional

stack It follows last in first out(LIFO). <stack> No iterator

queue It follows first in first out(FIFO). <queue> No iterator

Priority-queue First element out is always the highest

priority element.

<queue> No iterator

Containers

C++ Vector (STL)

• In C++, vectors are used to store elements of similar data types.
However, unlike arrays, the size of a vector can grow
dynamically.

• Vectors are part of the C++ Standard Template Library. To use
vectors, we need to include the vector header file

• #include<vector>

Vector Declaration

std::vector<T> vector_name;

Vector<int> num;

vector<int> vector1 = {1, 2, 3, 4, 5};

Vector<int> vector2{1,2,3,4,5,6}

vector<int> vector3(5, 12);

Lists

• List is a contiguous container while vector is a non-contiguous
container i.e list stores the elements on a contiguous memory and
vector stores on a non-contiguous memory.

• Insertion and deletion in the middle of the vector is very costly as it
takes lot of time in shifting all the elements. Linklist overcome this
problem and it is implemented using list container.

• List supports a bidirectional and provides an efficient way for
insertion and deletion operations.

• Traversal is slow in list as list elements are accessed sequentially while
vector supports a random access.

List with Templates

#include<iostream>

#include<list>

using namespace std;

int main()

{

list<int> l;

}

List – Intialization

#include<iostream>

#include<list>

using namespace std;

int main()

{

list<int> l{1,2,3,4};

}

C++ List insert()
• C++ List insert() function inserts a

new element just before the
specified position.

• It increases the size of the list
container by the number of
elements added in the list.

• In this example, iterator points to
the first element of the list.
Therefore, 5 is inserted before the
first element of the list using
insert() function.

#include<list>

using namespace std;

int main()

{

list<int> li={1,2,3,4};

list<int>::iterator itr=li.begin();

li.insert(itr,5);

for(itr=li.begin();itr!=li.end();++itr)

cout<<*itr;

return 0;

}

Insert in the front

• In this example, insert() function
inserts the string "java" 2 times
before the first element of the
list.

• #include <iostream>

• #include<list>

• using namespace std;

• int main()

• {

• list<string> li={"C is a language"};

• list<string>::iterator itr=li.begin();

• li.insert(itr,2,"java ");

• for(itr=li.begin();itr!=li.end();++itr)

• cout<<*itr;

• return 0;

• }

Insert in the middle

• In this example, range(first, last)
of list li1 is given. Therefore, the
insert() function inserts the
elements between this range in
the list li.

#include <iostream>

#include<list>

using namespace std;

int main()

{

list<int> li={1,2,3,4,5};

list<int> li1={6,7,8,9};

list<int>::iterator itr=li.begin();

li.insert(itr,li1.begin(),li1.end());

for(itr=li.begin();itr!=li.end();++itr)

{

cout<<*itr;

cout<<? ?;

}

return 0;

}

Push_back

• push_back(const value_type& x);

Push_front

Pop_back

Sort()

C++ List sort() function arranges the elements of a given list in an
increasing order. It does not involve in any construction and destruction
of elements. Elements are only moved within the container.

• void sort();

	C++ - Templates
	STL-Vectors & List

